SUPPLEMENTARY DOCUMENTS

Supplementary Table of Contents

1. Supplemental Appendix

Appendix 1: Members of guidelines' panels - page 6

2. Supplemental Tables

Supplemental Table 1: Panel members GRADE of recommendation rating and conflicts of interests – pages 7-10

Supplemental Table 2: Grading strength of recommendation and quality of evidence rating – pages 11-12

Supplemental Table 3: Summary of findings for communicating perioperative cardiac risk – page 13-15

Supplemental Table 4: GRADE quality assessment for communicating perioperative cardiac risk – page 16

Supplemental Table 5: Summary of findings for clinical risk indices – pages 17-21 Supplemental Table 6: GRADE quality assessment for clinical risk indices – pages 22-23 Supplemental Table 7. The risk of myocardial infarction, cardiac arrest, or death according to the RCRI score in high-quality external validation studies – pages 24-25 Supplemental Table 8. Summary of findings for preoperative NT-proBNP/BNP – pages 26-27

Supplemental Table 9. GRADE quality assessment for preoperative NT-proBNP/BNP – pages 28-29

Supplemental Table 10. Summary of findings for preoperative resting echocardiography - pages 30-31

Supplemental Table 11. GRADE quality assessment for preoperative resting

echocardiography - page 32

Supplemental Table 12. Summary of findings for preoperative coronary CT angiography – pages 33-35

Supplemental Table 13: GRADE quality assessment for preoperative coronary CT angiography – page 36

Supplemental Table 14: Summary of findings for preoperative exercise stress testing – pages 37-38

Supplemental Table 15: GRADE quality assessment for preoperative exercise stress testing – page 39

Supplemental Table 16: Summary of findings for preoperative cardiopulmonary exercise testing (CPET) – pages 40-44

Supplemental Table 17: GRADE quality assessment for preoperative cardiopulmonary exercise testing (CPET) – page 45

Supplemental Table 18: Summary of findings for preoperative pharmacological stress echocardiography and radionuclide imaging – pages 46-53

Supplemental Table 19. GRADE quality assessment for preoperative pharmacological stress echocardiography and radionuclide imaging – page 54-55

Supplemental Table 20: Summary of findings for perioperative ASA initiation and continuation – pages 56-58

Supplemental Table 21: GRADE quality assessment for perioperative ASA initiation and continuation – page 59

Supplemental Table 22: Summary of findings for perioperative β -blocker initiation –

page 60-61

Supplemental Table 23: GRADE quality assessment for perioperative β -blocker initiation – page 62-63

Supplemental Table 24: Summary of findings for perioperative β -blocker continuation – page 64

Supplemental Table 25: GRADE quality assessment for perioperative β -blocker

continuation - page 65

Supplemental Table 26: Summary of findings for preoperative initiation of α_2 -agonist – pages 66-68

Supplemental Table 27: GRADE quality assessment for preoperative α_2 -agonist initiation – page 69

Supplemental Table 28: Summary of findings for perioperative calcium channel blocker initiation – pages 70-72

Supplemental Table 29: GRADE quality assessment for preoperative calcium channel blocker initiation – page 73-74

Supplemental Table 30: Summary of findings for withholding ACEI/ARB in the noncardiac surgery setting – pages 75-77

Supplemental Table 31: GRADE quality assessment for withholding ACEI/ARB in the noncardiac surgery setting – page 78

Supplemental Table 32. Summary of findings for preoperative statin initiation - page 79

Supplemental Table 33: GRADE quality assessment for preoperative statin initiation – page 80

Supplemental Table 34: Summary of findings for perioperative statin continuation – page 81

Supplemental Table 35: GRADE quality assessment for perioperative statin continuation - page 82

Supplemental Table 36: Summary of findings for preoperative coronary revascularization - pages 83-85

Supplemental Table 37: GRADE quality assessment for preoperative coronary

revascularization - page 86

Supplemental Table 38: Summary of findings for preoperative smoking cessation – pages 87-89

Supplemental Table 39: GRADE quality assessment for preoperative smoking cessation – page 90-91

Supplemental Table 40: Summary of findings for postoperative troponin monitoring -

pages 92-93

Supplemental Table 41: GRADE quality assessment for postoperative troponin

monitoring – page 94

Supplemental Table 42: Summary of findings for postoperative ECG monitoring – pages 95-97

Supplemental Table 43: GRADE quality assessment for postoperative ECG monitoring – page 98

Supplemental Table 44: Summary of findings for postoperative telemetry monitoring – pages 99-100

Supplemental Table 45: GRADE quality assessment for postoperative telemetry

monitoring – page 101

Supplemental Table 46: Summary of findings for postoperative pulmonary artery catheter monitoring – page 102

Supplemental Table 47: GRADE quality assessment for postoperative pulmonary artery catheter monitoring – page 103

Supplemental Table 48: Summary of findings for postoperative shared-care models – page 104

Supplemental Table 49: GRADE quality assessment for postoperative shared-care models – page 105

Supplemental Table 50: Summary of findings for ASA and statin in patient who suffer myocardial injury after noncardiac surgery – page 106

Supplemental Table 51: GRADE quality assessment for ASA and statin in patient who suffer myocardial injury after noncardiac surgery – page 107

References – pages 108-119

Supplemental Appendix 1. Members of guidelines' panels

Members of the Primary Panel:

Co-chairs - Drs. P.J. Devereaux, Joel Parlow

Members - Drs. Amal Bessissow, Gregory Bryson, Emmanuelle Duceppe, Michelle Graham,

Kristin Lyons, Paul MacDonald, Michael McMullen, Daniel I. Sessler, Sadeesh Srinathan, Kim

Styles, Vikas Tandon

Members of the Secondary Panel:

Drs. Rebecca Auer, Mohit Bhandari, Davy Cheng, Peter Choi, Benjamin Chow, Gilles Dagenais, Josée Fafard, Gordon Guyatt, John Harlock, David Hornstein, Michael Jacka, Andrea Kurz, Luc Lanthier, Yannick LeManach, Finlay McAlister, Edward McFalls, Michael McGillion, Marko Mrkobrada, Ameen Patel, Tej Sheth, Maria Tiboni, Duminda Wijeysundera

		Bessissow, A	Bryson, G	Devereaux, PJ	Duceppe, E	Graham, M	Lyons, K	MacDonald, P	McMullen, M	Parlow, J	Sessler, D	Srinathan, S	Styles, K	Tandon, V
	1.Emergency surgery	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP
	2.Urgent/Semi- urgent surgery	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP
	3.Elective surgery	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP
	4.Risk communication	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP	1 VP
Preoperative risk prediction	5.Qualitative risk communication	1B	1B	COI	1 B	1 B	1C	1B	1 B	1B	1 B	1 B	1 B	1B
	6.Quantitative risk communication	1B	1B	COI	1 B	1C	1C	2C	1C	1C	1B	1 B	1 B	1B
	7.Clinical risk indices	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C
	8.NT- proBNP/BNP	1B	1 B	COI	COI	1 B	1B	1B	1 B	1 B	COI	COI	1 B	1B
	9.Resting echocardiography	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C

Supplemental Table 1: Panel members GRADE of recommendation rating and conflicts of interest*

	10.Coronary CT angiogram	1B	1B	COI	1B	1B	1B	1B	1B	1B	1B	1A	1B	COI
	11.Exercise testing	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C
	12.Cardio- pulmonary exercise testing	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C
	13.Stress echocardiography	2C	1C	1C	2B	1C	1C	1C	1C	1C	1B	1C	1C	1C
	14.Nuclear stress imaging	1C	1 B	1B	2B	1B	1B	1B	1B	1 B	1B	1B	1B	1B
	15.ASA initiation	1A	1A	COI	1A	COI	1A	COI	1A	COI	COI	COI	1A	1A
	16.ASA continuation	1A	1A	COI	1A	COI	1A	COI	1A	COI	COI	COI	1A	1A
Preoperative	17.β-blocker initiation	1A	COI	COI	1A	1A	1A	COI	1A	COI	1A	1A	1A	1A
risk modification	18.β-blocker continuation	2C	COI	COI	2C	2C	2C	2C	2B	2B	2C	2C	2C	2C
	19.α-2 agonist initiation	1A	1A	COI	1A	COI	1A	COI	1A	COI	COI	COI	1A	1A
	20.CCB initiation	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C	2C

	21.ACEI/ARB continuation	1C	1C	1C	1C	1C	2C	1C	1C	1C	1C	1C	1C	1C
	22.Statin continuation	1B	COI	COI	1B	1 B	1 B	1B	1 B	1B	1B	1B	1 B	1B
	23.Coronary revascularisation	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C	1C
	24.Smoking cessation	1C	1C	1C	IE	IE	IE	1C	1C	1C	1C	1C	1C	1C
	25.Troponin	COI	1B	COI	COI	COI	1B	1B	1B	1B	COI	COI	1B	COI
	26.ECG	2C	2C	2C	2C	2C	2C	2C	1C	2C	2C	2C	2C	2C
Postoperative	27.Telemetry	COI	IE	COI	IE	IE	IE	IE	IE	IE	COI	IE	IE	IE
monitoring	28.Pulmonary artery catheter	1B	1B	1 B	1B	1B	1B	1B	1 B	1B	1B	1B	1B	1B
	29.Shared-care models	2C	2B	2B	2B	2C	2C	2B	2C	2C	2C	2C	2C	2B
Management of	30.ASA	1B	1B	COI	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B
postoperative events	31.Statin	1B	1B	COI	1B	1B	1B	1B	1B	1B	1B	1B	1B	1B

*No member had a financial conflict of interest. All conflicts of interest were intellectual conflicts. Members in conflict of interest participated in the discussion but recused themselves from the vote. No external or industry funding was received for the development of these guidelines. Internal funding was used for the face-to-face meeting.

All members voted in the same direction for all recommendation (i.e., either "for" or "against").

1 = strong recommendation, 2 = conditional recommendation, A = high-quality evidence, B = moderate-quality evidence, C = low/very low-quality of evidence. ACEI = angiotensin-converting enzyme inhibitor, ARB = angiotensin receptor blockers, ASA = acetylsalicylic acid, BNP = brain natriuretic peptide, CCB = calcium channel blocker, COI = conflict of interest, CT = computed tomography, ECG = electrocardiogram, IE = panel member felt there was insufficient evidence to support a GRADE recommendation, NT-proBNP = N-terminal pro-brain natriuretic peptide, VP = recommendation based on values and preferences.

Supplemental '	Table 2: Gradin	g strength of re	commendation an	d quality of	evidence rating
~~ppromonum				1 1 1 1 1 1 1	

Grade of	Benefit vs Risk	Methodologic Quality of	Implications
Recommendation*	and Burdens	Supporting Evidence	
Strong	Desirable effects	Consistent evidence from RCTs	Recommendation can apply to most patients in
recommendation,	clearly outweigh	without important limitations or	most circumstances; further research is very
high-quality	undesirable effects,	exceptionally strong evidence from	unlikely to change our confidence in the estimate
evidence, Grade 1A	or <i>vice versa</i>	observational studies	of effect
Strong recommendation, moderate-quality evidence, Grade 1B	Desirable effects clearly outweigh undesirable effects, or vice versa	Evidence from RCTs with important limitations (inconsistent results, methodological flaws, indirect or imprecise), or very strong evidence from observational studies	Recommendation can apply to most patients in most circumstances; higher quality research may well have an important impact on our confidence in the estimate of effect and may change the estimate
Strong recommendation, low or very low- quality evidence, Grade 1C	Desirable effects clearly outweigh undesirable effects, or vice versa	Evidence for at least one critical outcome from observational studies, case series, or from RCTS with serious flaws or indirect evidence	Recommendation can apply to most patients in many circumstances; higher-quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate
Weak	Desirable effects	Consistent evidence from RCTs	The best action may differ depending on
recommendation,	closely balanced	without important limitations or	circumstances or patient or society values; further
high-quality	with undesirable	exceptionally strong evidence from	research is very unlikely to change our confidence
evidence, Grade 2A	effects	observational studies	in the estimate of effect
Weak recommendation, moderate-quality evidence, Grade 2B	Desirable effects closely balanced with undesirable effects	Evidence from RCTs with important limitations (inconsistent results, methodological flaws, indirect or imprecise), or very strong evidence from observational studies	Best action may differ depending on circumstances or patient or society values; higher- quality research may well have an important impact on our confidence in the estimate of effect and may change the estimate

Weak	Desirable effects	Evidence for at least one critical	Other alternatives may be equally reasonable;
recommendation,	closely balanced	outcome from observational studies,	higher-quality research is likely to have an
low/very low-quality	with undesirable	case series, or from RCTS with	important impact on our confidence in the estimate
evidence, Grade 2C	effects	serious flaws or indirect evidence	of effect and may well change the estimate

* We use the wording *we recommend* for strong recommendations (Grade 1) and *we suggest* for weak recommendations (Grade 2). This table was re-produced with approval from CHEST. Also, we have substituted the word "conditional" for "weak" in relation to our recommendations.

Author	Type of study	Population	Study characteristics	Results	Comments
year					
QUALIT	ATIVE RISK CC	MMUNICATIO	DN		
	1	1			
Taher ¹ 2002	cross-sectional survey	104 members of the Canadian Society of Internal Medicine who routinely performed preoperative risk assessments	mailed survey with questions on risk communication, interventions used to reduce risk, and routine use of cardiac risk indices questionnaire validation: questionnaire pilot tested with 5 internists	Risk communication to patient96% communicated their preoperative cardiacrisk assessment to their patients77% only communicated risk subjectively (i.e.,low, moderate, high risk)Definition of risk categorywhen asked to provide estimate of riskrespondents provided:8 different definitions of low risk (range <1% to	response rate 38% respondents compared to non- respondents were more likely to have an academic position (69% vs 53%; p<0.001) and be in group practice (67% vs 41%, p<0.001)
Man- Son- Hing 2002 ²	RCT	198 volunteers aged 60–80 years	participants asked to imagine having atrial fibrillation randomized to decision aid on probability of stroke and major bleeding when taking warfarin, aspirin, or no therapy: (1) quantitatively (numerically and graphically) or (2) qualitatively (e.g. very low, moderate, high).	Decisional conflict scale participants reviewing quantitative risk information scored better on the informed subscale of the decisional conflict scale (P < 0.05) participants using the quantitative decision aids felt more informed than those using the qualitative decision aid	the decisional conflict scale measured participants' uncertainty about which therapy to choose, modifiable factors contributing to uncertainty (such as feeling informed, clear about values and supported in decision-making), and perceived

Supplemental Table 3: Summary of findings for communicating perioperative cardiac risk

Marteau 2000 ³	RCT	209 pregnant women with low risk results following a serum screening test for Down	letter sent to inform about the result using either numerical (i.e., chance of having a baby with Down syndrome is: 1 in XXX) or qualitative probabilities (i.e., chance of having a baby with Down syndrome is: low)	Understanding of the results Numerical : 97% (94/ 97) understood result Qualitative: 91% (102/112) understood result 6% absolute difference (95% CI, 0% - 12%) p=0.04	effective decision- making
		syndrome			
QUANTI	TATIVE RISK C	COMMUNICAT	ION		
Trevena 2006 ²	systematic review on communicating with patients about evidence	patients making healthcare decisions (included surgical and nonsurgical settings)	high quality RCTs and systematic reviews of RCTs addressing one of following research questions: 1) What are the most effective communication tools to improve patient understanding of 'evidence'? 2) What are the most effective formats to represent probabilistic information to improve patient understanding of 'evidence'? 3) What are the most effective strategies to elicit patient preferences/beliefs/values relating to 'evidence'?	Effective tools for communicating with patients about evidence (10 systematic reviews and additional 17 trials) - using most available communication tools is better than no communication tool for increasing knowledge about health care - more likely to increase understanding if structured, tailored and/or interactive tool Effective formats for communicating probabilistic information (15 RCTs) - patients have more accurate perception of risk if probabilistic information presented as numbers like event rates (natural frequencies), rather than words, probabilities or summarized as effect measures such as relative risk reduction - illustrations such as cartoons, or graphs (vertical bar charts) appear to aid understanding Effective strategies for eliciting patient preferences (1 systematic review and 3 RCTs) - decision aids and decision analysis appear to be effective tools for eliciting preferences	total of 10 systematic reviews and additional 30 RCTS addressing at least one of the research questions

CI = confidence interval, RCT = randomized controlled trial.

	Quality Assessment									
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness Imprecision Publication bias		Publication bias	Pooled Estimate	Quality of evidence			
QUALITATIVE RISK COMMUNICATION										
104 (1 study) ¹	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No seriousNo seriouslimitationlimitation		N/A	Low			
QUANTITATIV	E RISK COMN	IUNICATION								
10 systematic reviews and 30 RCTs ²	No serious limitation	No serious limitation	Serious limitation ⁽³⁾	No serious limitation	No serious limitation	N/A	Moderate			

Supplemental Table 4: GRADE quality assessment for communicating perioperative cardiac risk

N/A = not applicable

Low response rate, at risk of selection bias
 Only one study found on the topic

3. Evidence included studies from surgical and non-surgical settings.

Supplemental Table 5: Summar	a of findings for alinical ris	lz indiaa
Supplemental Table 5: Summar	y of findings for chinical ris	k maices

Author	Population	Total No. patients	Design	Length of follow-up after surgery	Predictors	Systematic outcome monitoring	Outcome Results	Comments
REVISED (CARDIAC RISI	K INDEX (RC	RI)					
Ford 2010 ⁴	noncardiac surgery	792,740	meta-analysis that included 24 studies, up to 2008	majority followed for a maximum of 30 days	prognostic capabilities of the individual components of the RCRI were not evaluated in the meta-analysis	12 of 24 studies used systematic surveillance for cardiac complications	Major cardiac complications Noncardiac surgery 18 studies (124,032 patients) Median AUC 0.69 (IQR 0.62- 0.75), $I^2=82\%$ type of surgery was the only study variable found to explain heterogeneity in meta-regression Nonvascular mixed surgery 10 studies (9743 patients) Pooled AUC 0.75 (CI, 0.72- 0.79), $I^2=48\%$ Vascular surgery 7 studies (5696 patients) Pooled AUC 0.64 (CI, 0.61- 0.68), $I^2=29\%$	studies from Poldermans' group were included in the meta- analysis but provided similar results to the other studies
Rao 2012 ⁵	patients referred to cardiology aged ≥40 years undergoing many different types of	853	prospective cohort study	not reported	Insulin therapy aOR 1.07 (95% CI, 0.44-2.57) CAD aOR 4.98 (95% CI, 2.04- 12.16) CHF aOR 1.09 (95% CI, 0.13- 9.52)	troponin was measured in intermediate and high-risk patients, and in others if symptomatic	Major cardiovascular events: Events/Total: 26/853 (3%) RCRI: AUC 0.65 RCRI score OR (95% CI) (No. events/total) 1 : OR 1.00 (5/304) 2 : OR 1.22 (0.38–3.88) (7/347) 3 : OR 4.23 (1.42–12.60) (10/150)	major CV events: ACS, pulmonary edema, cardiac death; possible selection bias

	noncardiac				CKD aOR 1.26		4 : OR 4.93 (1.28–19.02) (4/52)	
	surgery				(95% CL 0.39-			
	~~~89				4.11)			
Andersson	many	447,352	retrospective	30 days	Individual RCRI	no	Major cardiovascular events:	major CV
20156	different		register-based	•	components:		Events/Total: 2275/447,352	events:
	types of		study		high-risk surgery		(0.51%)	nonfatal MI,
	noncardiac				aOR 2.70 (95% CI,		RCRI: AUC 0.76	nonfatal
	surgery				2.46-2.96)			ischemic
					<b>CAD</b> aOR 3.30			stroke, or
					(95% CI, 2.96–			CV death
					3.69)			(ICD-10
					<b>CHF</b> aOR 2.65			codes)
					(95% CI, 2.29–			
					3.06)			
					<b>CVD</b> aOR 10.02			
					(95% CI, 9.08–			
					11.05)			
					insulin aOR 1.62			
					(95% CI, 1.37–			
					1.93)			
					<b>CKD</b> aOR 1.45			
					(95% CI, 1.33–			
					1.59)			
					,			
Park 2011 ⁷	consecutive	1923	prospective	30 days	prognostic	troponin was	Major cardiovascular events:	major CV
	patients with		cohort study		capabilities of the	measured at	Events/Total: 280/1923 (14.6%)	events: MI,
	cardiac				individual	the end of the	RCRI: AUC 0.62 (95% CI,	pulmonary
	consult and				components of the	surgical day	0.60-0.64)	edema, or
	echo-				RCRI were not	and 24 hours	Other variables in the	primary CV
	cardiography				evaluated in the this	later	multivariable model: age, sex,	death
	before				study		functional status $\geq$ 3, diabetes,	
	elective						heart failure, stroke, evidence of	
	noncardiac						ischemic heart disease or history	
	surgery						of revascularization, emergency	
							surgery, and vascular surgery	

Gupta 2011 ⁸	various types of noncardiac surgery	257,385	retrospective NSQIP study	30 days	high-risk surgery aOR 2.01 (95% CI, 1.81-2.23) CHF aOR 3.26 (95% CI, 2.67- 3.98) CAD aOR 3.02 (95% CI, 2.51- 3.64) CVD aOR 1.92 (95% CI, 1.67- 2.20) insulin aOR 1.27 (95% CI, 1.10- 1.46) CKD aOR 4.86 (95% CI, 4.31- 5.49)	no	MI or cardiac arrest: Events/Total: 1401/257,385 (0.54%) RCRI: AUC 0.75	MI definition: 1) ST elevation, new LBBB, or new Q waves or 2) troponin elevation >3x ULN
Choi 2010 ⁹	consecutive patients undergoing major noncardiac surgery who were referred for cardiac consult and ≥1 CV risk factor or abnormal ECG	2304	prospective cohort study	30 days	RCRI >2 was associated with increased risk of major CV event after adjustment for age, sex, and traditional clinical risk factors (aRR 1.50 (95% CI, 1.17-1.91)	troponin was measured at the end of the surgical day and 24 hours later	Major CV events RCRI >2: AUC 0.59	major CV event: MI, pulmonary edema, or CV death
Davis 2013 ¹⁰	noncardiac surgery, age ≥50 years,	9519	administrative database	not reported	prognostic capabilities of the individual	no	Major CV events: Events/Total: 200/9519 (2.1%)	Major CV events: MI, pulmonary

NSQIP MIC	screened in preoperative clinic, length of stay ≥2 days				components of the RCRI were not evaluated in the this study		RCRI : AUC 0.79 (95% CI, 0.76-0.83)	edema, or primary cardiac arrest
Gupta 2011 ⁸	various types of noncardiac and cardiac surgery*	211,410 patients (derivation) 257,385 patients (validation)	retrospective NSQIP study	30 days	ASA class, dependent functional status, increasing age, abnormal creatinine (>1.5 mg/dL), and type of surgery were independent predictors of death or MI	no	MI or death Derivation cohort:Events/Total: 1371/211,410 (0.65%)C-statistic 0.88 Validation cohort:Events/Total: 1401/257,385 (0.54%)C-statistic 0.87 Vascular surgery only (n=26,183) C-statistic 0.75Other variables in the multivariable model:ASA class, dependent functional status, increasing age, abnormal creatinine (>1.5 mg/dL), and type of surgery (20 categories of surgery)	MI definition: 1) ST elevation, new LBBB, or new Q waves or 2) troponin elevation >3x ULN * 0.3% cardiac surgery
ACS NSQIP							-	
Bilimoria 2013 ¹¹	various types of noncardiac and cardiac surgery	1,414,006	retrospective NSQIP study	unclear	N/R	no	<u>Mortality</u> Events: 18,909 (1.3%) C-statistic: 0.94 <u>Cardiac events</u> Events: 10,676 (0.8%)	cardiac event: cardiac arrest or MI

			C-statistic: 0.89	

aOR = adjusted odds ratio, ACS = acute coronary syndrome, ASA = American Society of Anesthesiologists, AUC = area under the receiver operator curve, CAD = coronary artery disease, CVD = cerebrovascular disease, CKD = chronic kidney disease, CI = confidence interval, CHF = congestive heart failure, CRP = C-reactive protein, CV = cardiovascular, ICD = international code of diseases, LBBB = left bundle branch block, LR = likelihood ratio, MACE = major adverse cardiac events, MI = myocardial infarction, MINS = myocardial injury after noncardiac surgery, N/R = not reported, NSQIP = National Surgical Quality Improvement Program, NT-proBNP = N-terminal pro-brain natriuretic peptide, RCRI = Revised Cardiac Risk Index, ULN = upper limit of normal.

### Supplemental Table 6. GRADE quality assessment for clinical risk indices

		Quality A	ssessment			Summary of	f Evidence
No. of participants (No. of studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	AUC	Quality of evidence
REVISED CA	RDIAC RISK I	INDEX					
MAJOR CAR	DIOVASCULA	<b>R COMPLICA</b>	ΓIONS				
3176 (5 studies) ¹²⁻¹⁶	Serious limitation ⁽¹⁾	Serious limitation ⁽²⁾	No serious limitation	No serious limitation	Not detected	Median AUC 0.69 (IQR 0.62-0.75)	Low
NSQIP MICA							
MI AND CAR	DIAC ARRES	Г					
468,795 (1 study) ⁸	Very serious limitation ⁽³⁾	No serious limitation	No serious limitation	No serious limitation	Not detected	AUC 0.88	Low
ACS NSQIP							
MI AND CAR	DIAC ARRES	Г					
1,414,006 (1 study) ¹¹	Very serious limitation ⁽³⁾	No serious limitation	No serious limitation	No serious limitation	Not detected	AUC 0.90	Low

AUC = area under the receiver operator curve, CI = confidence interval, IQR = interquartile range, MI = myocardial infarction, MICA = myocardial infarction or cardiac arrest, NSQIP = National Surgical Quality Improvement Program.

- 1. Only a minority of studies were high-quality studies (i.e., prospective design, low risk of selection bias, systematic outcome assessment and blinded outcome adjudication).
- 2.  $I^2 = 82\%$  in meta-analysis by Ford et al.

3. Risk of bias since not prospective design, no systematic monitoring of outcomes in all patients and no blinded adjudication of event. Further, has not been validated since the original publication. Includes ASA class which high potential for inter-rater variability.

RCRI RCRI RCRI RCRI Risk 0 point 1 point 2 points  $\geq$ 3 points outcome Туре **Primary** Author Design detection No. No. No. No. No. No. No. No. surgery outcome bias patients events patients events events patients patients events Rajagopalan 200813 Prospective 3 42 9 28 2 No Vascular MI 14 61 5 Ausset  $2008^{14}$ Prospective Orthopedic 2 15 2 11 2 No MI 6 60 1 CV Devereaux 201115 death. nonfatal MI. Prospective No Mixed 10 452 23 291 4 76 16 44 nonfatal cardiac arrest Sheth Death,  $2015^{16}$ Prospective Mixed 15 320 29 407 19 178 50 No 11 MI Le Manach  $2005^{12}$ Retrospective 0 0 14 607 380 7 No AAA MI 34 146 TOTAL 1382 37 34 874 83 68 673 247 **Pooled Event Rate** Major cardiac events 3.9% 6.0% 10.1% 15.0% (95% CI) (2.8% - 5.4%)(4.9%-7.4%) (8.1%-12.6%) (11.1%-20.0%)

Supplemental Table 7. The risk of myocardial infarction, cardiac arrest, or death according to the RCRI score in highquality external validation studies*

AAA = aortic abdominal aneurysm, CI = confidence interval, CV = cardiovascular, MI = myocardial infarction, RCRI = Revised Cardiac Risk Index.

*Studies included if: performed systematic outcome monitoring (i.e. troponin monitoring), reported on cardiac events (i.e., MI, cardiac arrest and/or death), and reported number of patients and cardiac events for each RCRI score.

Author	No. patients (No. studies)	Design (type surgery)	Type of Natriuretic Peptide	Results	Comments
СОМРО	SITE DEATH	I AND NON-FA	TAL MYOCARDIAL INI	FARCTION	
Rodseth 2014 ¹⁷	2179 patients (18 studies)	individual patient data meta-analysis (4 studies mixed or major general surgery, 3 orthopedic, 3 thoracic, 2 urologic, 6 vascular)	NT-proBNP (10 studies) BNP (8 studies)	Death or nonfatal MI at 30 days:Overall incidence 10.8% (235/2179)No. events/TotalPositive NT-proBNP/BNP*: 166/763 (21.8%)Negative NT-proBNP/BNP*: 69/1416 (4.9%)aOR 3.40 (95% CI, 2.57-4.47) p< 0.001	*Positive NT-proBNP ≥300 ng/L *Positive BNP ≥92 mg/l NP threshold value associated with lowest p value for death and MI for BNP was 92 mg/l and for NTproBNP was 300 ng/l
MYOCA	RDIAL INFA	RCTION			
Rodseth 2011 ¹⁸	850 patients (6 studies)	individual patient data meta-analysis (vascular surgery)	NT-proBNP (1 study, n=218 patients) BNP (5 studies, n=632 patients)	Nonfatal MI at 30 days: ORs for NP higher than the threshold: aOR 7.5 (95% CI, 4.1-13.6)* no measure of heterogeneity reported	General optimal test threshold: BNP =116 pg/ml and NT-proBNP= 277.5 pg/ml

# Supplemental Table 8. Summary of findings for preoperative NT-proBNP/BNP

CARDIA	AC MORTAL	ITY			
Rodseth 2011 ¹⁸	850 patients (6 studies)	see above	see above	Cardiac death at 30 days: ORs for NP higher than the threshold: aOR 4.3 (95% CI, 1.7-11.3) no measure of heterogeneity reported	General optimal test threshold: BNP =116 pg/ml and NT-proBNP= 277.5 pg/ml
Ryding 2009 ¹⁹	4856 patients (15 studies)	meta-analysis (7 studies mixed noncardiac surgery, 1 orthopedic, 7 vascular)	NT-proBNP (6 studies) BNP (9 studies)	Cardiac mortality:           No. events/Total           Positive NT-proBNP/BNP*: 45/482 (9.3%)           Negative NT-proBNP/BNP*: 3/1905 (0.2%)           OR 23.88 (95% CI, 9.43-60.43) I ² =0%	*positivity threshold varied across studies cardiac death required evidence of MI, cardiac arrhythmia, or congestive cardiac failure
ALL-CA	USE MORTA				
Rodseth 2011 ¹⁸	850 patients (6 studies)	see above	see above	All-cause mortality at 30 days: aOR for NT-proBNP/BNP higher than the threshold: aOR 3.1 (95% CI, 1.4-6.7)*	*no measure of heterogeneity reported General optimal test threshold: BNP =116 pg/ml and NT-proBNP= 277.5 pg/ml
Ryding 2009 ¹⁹	4856 patients (15 studies)	see above	see above	Short-term all-cause mortality:           No. events/Total           Positive NT-proBNP/BNP*: 22/216 (10.2%)           Negative NT-proBNP/BNP*: 4/484 (0.8%)           OR 7.81 (95% CI, 2.83-21.58) I ² =0%	short term = within 48 days *positivity threshold varied across studies

aOR = adjusted odds ratio, BNP = brain natriuretic peptide, CI = confidence interval, MI = myocardial infarction, NP = natriuretic peptide, NT-proBNP = N-terminal pro-brain natriuretic peptide, OR = odds ratio, RCRI = Revised Cardiac Risk Index

# Supplemental Table 9. GRADE quality assessment for preoperative NT-proBNP/BNP

		Quality A	Summary of evidence						
No of patients (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated incidence with positive NT-proBNP or BNP result (95% CI)	Anticipated incidence with negative NT- proBNP or BNP result (95% CI)	Pooled Estimate (95% CI)	Quality of evidence
RODSETH	2014 ¹⁷								
COMPOSI	TE OF DEAT	TH AND MYOC	ARDIAL INF.	ARCTION at 3	30 days				
2179 patients (18 studies)	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Potential limitation ⁽¹⁾	21.8% (19.0%- 24.8%)	4.9% (3.9%- 6.1%)	aOR 3.40 (2.57-4.47)	Moderate
RODSETH	2011 ¹⁸								
ALL-CAUS	SE MORTAL	ITY							
850 patients (6 studies)	No serious limitation	Undetermined	No serious limitation	Serious limitation ⁽²⁾	Potential limitation ⁽³⁾	N/A	N/A	aOR 3.1 (1.4-6.7)	Low
MYOCARI	DIAL INFAR	CTION at 30 da	iys						
850 patients (6 studies)	No serious limitation	Undetermined	No serious limitation	Serious limitation ⁽²⁾	Potential limitation ⁽³⁾	N/A	N/A	aOR 7.5 (4.1-13.6	Low

CARDIAC	MORTALIT	Y							
850 patients (6 studies)	No serious limitation	Undetermined	No serious limitation	Serious limitation ⁽²⁾	Potential limitation ⁽³⁾	N/A	N/A	aOR 4.3 (1.7-11.3)	Low
RYDING 2	009 ¹⁹								
ALL-CAUS	SE MORTAL	ITY within 48 d	ays						
4856 patients (15 studies)	Serious limitation ⁽⁴⁾	No serious limitation	No serious limitation	Serious limitation ⁽⁵⁾	Undetected	10.2%	0.8%	OR 7.81 (2.83- 21.58)	Low
CARDIAC	MORTALIT	Y							
4856 patients (15 studies)	Serious limitation ⁽⁴⁾	No serious limitation	No serious limitation	Serious limitation ⁽⁵⁾	Undetected	9.3%	0.2%	OR 23.88 (9.43- 60.43)	Low

aOR = adjusted odds ratio, BNP = brain natriuretic peptide, CI = confidence interval, N/A = not available, NT-proBNP = N-terminal pro-brain natriuretic peptide, OR = odds ratio.

- 1. Since dataset were only given by willing investigator, negative dataset could have not been shared
- 2. Large confidence interval and small number of events (not mentioned)
- 3. Only 6 out of 10 datasets obtained for individual patient meta-analysis
- 4. No adjustment for potential confounders. All studies were conducted in a blinded fashion, except one in which the BNP values were known to the clinicians treating the patients. Furthermore, systematic screening for asymptomatic postoperative cardiac events was not carried out, which may have led to bias in this study. Otherwise, there was no evidence of selective reporting of data or systematic bias in the other studies
- 5. Very wide confidence interval and very few events

Author Year	Population	Total no. patients	Design	Echocardiography Parameters	Systematic outcome monitoring	Outcome Results	Comments
Park 2011 ⁷	consecutive patients with cardiac consult and echo- cardiography before elective noncardiac surgery	1923	prospective cohort study with 30 days of follow-up	TTE within 2 weeks before surgery LVEF, RWMI, LA volume index, E/E'	troponin was measured at the end of the surgical day and 24 hours later	Major CV events         Events/Total: 280/1923 (14.6%)         Major CV events         LVEF <50%	major CV events: MI, pulmonary edema, cardiac death all TTE parameters were inferior to NT-proBNP for predicting major CV events p<0.001
Rohde 2001 ²⁰	non- emergency, noncardiac surgery, expected LOS ≥2 days	570	prospective cohort	TTE < 3 months before surgery -LV systolic function -LVH -MR and AS	CKMB and ECG were measured for the first few days after surgery	Major CV eventsEvents/total: $44/570 (8\%)$ Systolic dysfunctionaOR 2.0 (95% CI, 1.0-4.5)Mod-severe LVHaOR 2.3 (95% CI, 1.0-4.5)Peak instantaneous aorticgradients of $\geq$ 40 mm HgaOR 6.8 (95% CI, 1.3-31)Other variables in the model : CHF,diabetes with insulin, high-risksurgery, CVD, CAD, CKD	blinded outcome assessment major CV events: MI, cardiogenic pulmonary edema, VF or primary cardiac arrest, sustained complete heart block models using echocardiographic variables were better able to predict major CV events compared to models that used clinical variables only (c statistic 0.73 v 0.68, p<0.05)

Supplemental Table 10. Summary of findings for preoperative resting echocardiography

Halm	elective	339	prospective	EF, wall motion,	yes	Major CV events	blinded outcome assessment
1996 ²¹	major		cohort	LVH		EF <40%	
	noncardiac					aOR 2.5 (95% CI, 1.2-5.0)	major CV events: cardiac death,
	surgery;						nonfatal MI, unstable angina,
	patients with					no echocardiographic variables	CHF, VT
	known CAD,					were predictive of post-operative	
	PVD or high-					ischemic events (i.e., cardiac death,	interobserver agreement rate:
	risk of CAD					nonfatal MI, unstable angina)	90%
						Other variables in the model:	incremental value of adding
						vascular surgery, history of	echocardiographic information
						dysrhythmia, history of CAD, use	over clinical risk factors was
						of digoxin	minimal, with minimal change in
							c-statistic

aOR = adjusted odds ratio, aRR = adjusted relative risk, AS = aortic stenosis, AUC = area under the receiver operator curve, CHF = congestive heart failure, CKMB = creatine kinase MB isoenzyme, CV = cardiovascular, ECG = electrocardiogram, E/E' = transmitral early diastolic velocity/tissue Doppler mitral annular early diastolic velocity, LA= left atrial, LVEF = left ventricular ejection fraction, LV = left ventricular, LVH = left ventricular hypertrophy, MI = myocardial infarction, MACE = major adverse cardiac events, MR = mitral regurgitation, NT-proBNP = N-terminal pro-brain natriuretic peptide, RWMI = regional wall motion index, TTE = transhoracic echocardiography, VT = ventricular tachycardia.

### Supplemental Table 11. GRADE quality assessment for preoperative resting echocardiography

	Quality Assessment										
No of Participants (No. of studies)Risk of biasInconsistencyIndirectnessImprecisionPublication biasPooled estimate of effectQual evid											
MAJOR CARDI	MAJOR CARDIOVASCULAR COMPLICATIONS										
2832 (3 studies) ^{7, 20, 21}	Serious limitation ⁽¹⁾	Serious limitation ⁽²⁾	No serious limitation	Serious limitation ⁽³⁾	Potential ⁽⁴⁾	N/A	Very low				

Risk of interrater variability in echocardiographic readings
 Inconsistent association between echocardiographic findings and ischemic events in the 3 studies

3. Large confidence intervals and small number of events

4. Only 3 studies found on the topic

Author Year	Population	Total no.	Design	Threshold for CT angiogram	Systematic outcome	Outcome Results	Comments
		patients			monitoring		
Sheth 2015 ¹⁶	in-hospital noncardiac surgery, patients age ≥45 and history of, or risk factors for, athero- sclerotic disease, or a history of CHF	955	prospective cohort study	1) normal: no evidence of coronary atherosclerosis; 2) non-obstructive CAD: evidence of $\geq 1$ coronary artery plaque with a <50% stenosis; 3) obstructive CAD: $\geq 1$ coronary artery plaque with a $\geq 50\%$ stenosis; 4) extensive obstructive disease: $\geq 50\%$ stenosis in 2 coronary arteries including the proximal LAD artery, $\geq 50\%$ stenosis in three coronary arteries, or $\geq 50\%$ stenosis in the left main coronary artery	troponin was measured daily for 3 days after surgery, an ECG was obtained if a troponin elevation was detected	Non-fatal MI and CV death: Events/Total: 74/955 patients (8%) RCRI + CCTA AUC 0.66 (95% CI, 0.60-0.73) Extensive obstructive CAD aHR 3.76 (95% CI, 1.12-12.62) Overall absolute net reclassification in a sample of 1000 patients is that CCTA will result in an inappropriate estimate of risk in 81 patients (based on risk categories of <5%, 5-15%, and >15% for the primary outcome)	blinded outcome assessment
Hwang 2015 ²²	non-cardiac surgery patients with >1 clinical CV risk factors or taking CV medication, and no contra- indication for CT	844	prospective cohort study	Segment Involvement score: no. of coronary artery segments with stenosis irrespective of the severity (0–16). Duke Jeopardy score: presence of luminal diameter stenosis (DS) $\geq$ 50% in left main, or DS $\geq$ 70% in LAD artery,	No	Major CV events:           Events/Total: 25/844 (3%)           RCRI + Segment Involvement           score>3           AUC 0.72 (95% CI, 0.62–0.83)           RCRI + Duke Jeopardy>0           AUC 0.70 (95% CI, 0.59–0.82)           RCRI + Duke Jeopardy>0 +           Segment Involvement score>3           AUC 0.76 (95% CI, 0.65–0.87)	major CV events: MI, pulmonary edema, cardiac death no blinded outcome assessment

# Supplemental Table 12. Summary of findings for preoperative coronary CT angiography

				diagonal branch, left circumflex coronary artery, obtuse marginal branch, or posterior descending artery. Each segment is assigned 2 points, maximum score = 12		NRI 0.92 (95% CI, 0.55–1.29)*	
Kong 2015 ²³	liver transplantation	443	retrospective cohort study	positive CCTA: coronary calcium score>400 432 (97.5%) had a coronary calcium score of ≤400	yes* *patients were excluded if they did not have troponin monitoring after surgery (n=60)	Major CV events: Events/Total: 38/443 (8.6%) Coronary calcium score>400 aOR 4.62 (95% CI, 1.14-18.72)* other variables in the model: gender, statin	major CV events: non-fatal MI, serious arrhythmia (VT, VF, or heart block requiring treatment), and cardiac death (because of fatal MI or CHF). no blinded outcome assessment
Ahn 2013 ²⁴	intermediate risk intra- thoracic, intraperitoneal, orthopedic, head and neck, and prostate disease	239	prospective cohort study	<ol> <li>angiographically significant disease was categorized into</li> <li>groups ranging from no significant stenosis to 3- vessel disease</li> <li>coronary calcium score (CACS) ≥113</li> </ol>	no	Major CV events:Events/Total: $19/239$ (8%)CACS $\geq 113$ aOR 4.21 (95% CI, 1.25–14.18)*Multivessel disease (2-3vessels)aOR 7.31 (95% CI, 2.25–23.69)**other variables in the model:ischemic heart disease, CHF,CKD	major CV events: cardiac death, ACS, pulmonary edema, VF, VT with hemodynamic compromise, and complete heart block. no blinded outcome assessment

ACS = acute coronary syndrome, CAD = coronary artery disease, CCTA = coronary CT angiogram, CKD = chronic kidney disease, CHF = congestive heart failure, CV = cardiovascular, CT = computed tomography, DS = diameter stenosis, ECG = electrocardiogram, LAD = left anterior descending, MI = myocardial infarction, RCRI = Revised Cardiac Risk Index, ULN = upper limit of normal, VF = ventricular fibrillation, VT = ventricular tachycardia.

		Summary of Evidence							
No. of participants (No. of studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Estimate of effect	Quality of evidence		
MAJOR CARDIOVASCULAR COMPLICATIONS – 30 days									
2481 (4 studies) 16, 22-24	No serious limitation ⁽¹⁾	No serious limitation	No serious limitation	Serious limitation ⁽²⁾	Not detected	Overall absolute net reclassification in a sample of 1000 patients is that CCTA will result in an inappropriate estimate of risk in 81 patients (based on risk categories of <5%, 5-15%, and >15% for the primary outcome)	Moderate		

CT = computed tomography, CCTA = coronary computed tomography angiography.

- 1. 3 of 4 studies were not blinded to CCTA results and 2 of 4 did not systematically assess for primary outcome. However, one study¹⁶ was high quality (i.e. blinded outcome assessment, systematic outcome monitoring, adjusted analysis) and was given the most weight in the recommendation.
- 2. Small number of events and large confidence intervals.
| Author<br>Year                 | Population                                                                    | Total<br>no.<br>patients | Design                      | Exercise testing<br>results                                                                                                                                                                   | Systematic<br>monitoring<br>of outcome        | Outcome Results                                                                                       | Comments                                                                                                                          |
|--------------------------------|-------------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Kaaja ²⁵<br>1993    | vascular<br>surgery                                                           | 58                       | prospective<br>cohort study | ECG monitoring with<br>bicycle pedaling;<br>unclear assessment for<br>test positivity and no<br>formal protocol<br>Test positive/Total:<br>14/58 (24.1%)                                      | no                                            | <u>Myocardial infarction</u><br>positive stress test: 2/14 (14.3%)<br>negative stress test: 0/44 (0%) | no risk-adjusted<br>analysis<br>performed                                                                                         |
| McPhail<br>1987 ²⁶  | vascular<br>surgery                                                           | 101                      | prospective<br>cohort study | <ul> <li>61 patients with<br/>treadmill exercise<br/>testing with ECG<br/>monitoring (Bruce<br/>protocol)</li> <li>40 patients with arm<br/>crank ergometry<br/>(Schwade protocol)</li> </ul> | no                                            | Major cardiac eventsPredicted max heart rate (PMHR)PMHR <85%: 17/70 (24.3%)                           | major cardiac<br>events: MI,<br>acute CHF, VT,<br>VF, cardiac<br>death<br>MI definition:<br>ST elevation and<br>CKMB<br>elevation |
| Carliner<br>1985 ²⁷ | elective<br>major non-<br>cardiac<br>surgery<br>with<br>general<br>anesthesia | 200                      | prospective<br>cohort study | treadmill exercise<br>testing with ECG<br>monitoring                                                                                                                                          | CK and<br>CKMB<br>monitoring<br>after surgery | <b>Death and MI</b><br>no independent association between<br>ECG exercise change and outcome          | MI definition:<br>new Q waves or<br>persistent deep<br>T-wave<br>inversion with<br>elevated CK and<br>CK-MB                       |
| Sgura 2000 ²⁸       | vascular<br>surgery                                                           | 149                      | prospective<br>cohort study | supine bicycle with<br>ECG monitoring;<br>patients categorized as                                                                                                                             | unclear                                       | Death and MI<br>low capacity: 9 /73 (12%)<br>intermediate: 2/70 (3%)                                  |                                                                                                                                   |

# Supplemental Table 14: Summary of findings for preoperative exercise stress testing

	low (<4 METs),	high capacity: 0/6 (p=0.03)	
	intermediate (4-7		
	METs), or high-	no significant association between	
	functional (>7 METs)	exercise induced ST depression, or	
	capacity	any clinical variable (other than age)	

CHF = congestive heart failure, CKMB = creatine kinase MB isoenzyme, ECG = electrocardiogram, METSs = metabolic equivalents, MI = myocardial infarction, VF = ventricular fibrillation, VT = ventricular tachycardia.

#### Supplemental Table 15: GRADE quality assessment for preoperative exercise stress testing

		Summary of findings									
No. of participants (No. of studies)	Risk of bias	Pooled estimate of effect	Quality of evidence								
MAJOR CARDI	MAJOR CARDIOVASCULAR EVENTS										
508 patients (4 studies) ²⁵⁻²⁸	Very serious limitation ⁽¹⁾	Serious limitation ⁽²⁾	No serious limitation	Serious limitation ⁽³⁾	Unclear	N/A	Very low				

N/A = not available.

Lack of risk-adjusted analysis, systematic monitoring of outcome, and outcome adjudication
 Inconsistent association between exercise testing results and cardiovascular outcomes between studies

3. Very small number of events

Author Year	Population	Total No. Patients	Design	CPET results	Systematic monitoring of outcome	Outcome Results	Comments
Grant 2014 ²⁹	elective endo- vascular AAA repair	506	prospective cohort study	threshold determined a priori, analyzed as dichotomous 1) VO ₂ at AT<10.2 ml*kg ¹ min: 241/506 (47.6%) 2) peak VO ₂ <15 ml*kg ⁻¹ min: 255/506 (50.4%) 3) V _E /VCO ₂ at AT>42: 79/506 (15.6%)	yes (mortality)	All-cause mortality at 5 years: Events/Total: 90/506 (17.8%) $V_{\rm E}/VCO_2$ at AT>42 aHR 1.63 (95% CI, 1.01–2.63) peak VO2<15 ml*kg ⁻¹ min aHR 1.68 (95% CI, 1.00–2.80)other variables in the model: age, sex, diabetes, cardiac ischemia, statin, creatinine, urea, hemoglobin	potential selection bias number of loss to follow-up not reported; no multivariable analysis for 30- day outcomes reported
Dunne 2014 ³⁰	hepa- tectomy	197	retrospective cohort study	analyzed as <u>continuous</u> variables 1) mean AT: 11.5 ml kg ⁻¹ min ⁻¹ (SD 2.5) 2) peak VO ₂ : 17.7 ml kg ⁻¹ min ⁻¹ (SD 4.5) 3) mean V _E /VCO ₂ at the AT: 31.8 (SD 5.2)	no	Cardiopulmonary complications 30 days: Events/Total: 24/197 (12%). CPET variables were not associated with outcome in univariable or multivariable analysis (data not reported)	cardiorespiratory complications included all chest infections, cardiac arrhythmias, and ischemic cardiac events
Junejo 2012 ³¹	hepa- tectomy	94	prospective cohort study	analyzed as <u>dichotomous</u> , threshold determined by AUC analysis in univariable analysis: $V_E/VCO_2$ at AT $\geq$ 34.5	no	Cardiovascular events (30-day):Events/Total: 11/94 (11%)no analysis reportedCardiopulmonary events (up to4 years): 39/94 (41%)VE/VCO2 at AT $\geq$ 34.5aOR 3.45 (95% CI, 1.31-9.14)	pulmonary: de novo requirement for supplemental O2 or other respiratory support, <u>cardiovascular</u> : MI, myocardial

## Supplemental Table 16: Summary of findings for preoperative cardiopulmonary exercise testing (CPET)

						other variables in the model: age only	ischemia, hypotension requiring treatment, atrial or ventricular arrhythmias, or pulmonary edema
Colson 2012 ³²	elective major abdominal or thoracic surgery	1725	prospective cohort study	analyzed as <u>continuous</u> variables, AT-P _{EO2} AT-V _{O2} /HR AT-RER AT-V _{O2*} kg ⁻¹	yes	All-cause mortality at 5 years: $616/1725 (36\%)$ weak evidence of effect for: $AT-P_{EO2}$ , $[P(B\neq 0)=70\%]$ $AT-V_{02}/HR$ , $[P(B\neq 0)=65\%]$ $AT-RER$ , $[P(B\neq 0)=57\%]$ $AT-V_{02*}kg^{-1} [P(B\neq 0)=54\%]$ other variables in the model (very strong predictors: $[P(B\neq 0)=100\%]$ ): gender, surgery type, forced vital capacity ratio	no multivariable analysis for 30- day outcomes reported estimate of effect not reported (e.g. odds ratio or hazard ratio). The authors provided the following explanation for the results: interpretation of $P(B\neq 0)$ : 50%: against an effect 50-75%:weak 75-95%:positive 95-99%:strong >99%:very strong evidence of an effect

Lai 2013 ³³	elective major colorectal surgery	269	prospective cohort study	$\frac{\text{dichotomous,}}{\text{threshold determined a}}$ threshold determined a priori: 1) Fit: AT $\geq 11.0$ - 174/269 (64.7%) 2) Unfit: AT < 11.0 ml - 69/269 (25.7%) 3) Unable: failed to pedal the cycle or demonstrate an AT - 26/269 (9.7%)	yes (mortality)	All-cause mortality at 2 yrs:Events/Total: 19/174 (fit), 14/69(unfit), 14/26 (unable)Unable to perform CPET(compared to Fit)aOR 3.98 (95% CI, 1.04-11.73)other variables in the model: age,gender, Dukes staging ofmalignancy	no multivariable analysis for short term outcomes reported no loss to follow- up
Hartley 2012 ³⁴	elective AAA repair	415	prospective cohort study	dichotomous, threshold determined a priori: 1) VO ₂ at AT <10.2: 191/415 (46.0%) 2) peak VO ₂ <15: 221/415 (53.3%) 3) V _E /VCO ₂ at AT >42: 176/415 (42.4%)	yes	All-cause mortality at 30 days: Events/Total: 14/415 (3.4%)1) VO2 at AT <10.2 aOR 6.35 (95% CI, 1.84-29.80) other variables in the model: open surgery, inducible cardiac ischemia, anemia2) $\geq$ 2 subthreshold CPET values aOR 11.39 (95% CI, 2.89-76.46) other variables in the model: inducible cardiac ischemia, open surgery, juxta/suprarenal AAA, anemiaAll-cause mortality at 90 days: Events/Total: 19/415 (4.6%)1) peak VO2 <15 aOR 8.59 (95% CI, 2.33-55.75) other variables in the model: open surgery, inducible cardiac ischemia, anemia	

						2) ≥2 subthreshold CPET values aOR 5.40 (95% CI, 1.86-19.67) other variables in the model: inducible cardiac ischemia, open surgery, juxta/suprarenal AAA, anemia	
Carlisle 2007 ³⁵	AAA repair	130	prospective cohort study	analyzed as <u>continuous</u> in multivariable analysis	yes	All-cause mortality at 30 days Events/Total: 14/130 (10.8%)reported in the text that "Multivariable analyses indicated that survival, to both 30 days and for the total observation period, correlated best with $V_E/VCO_2$ " but no estimate of effect reportedAll-cause mortality at median 35 months: Events/Total: 29/130 (22.3%)1) $V_E/VCO_2$ aHR 1.13 (95% CI, 1.07-1.19) p<0.001 other variables in the model: RCRI, AT2) AT aHR 0.84 (95% CI, 0.72-0.98) p=0.033 other variables in the model: RCRI, VE/VCO_2Sequential log rank tests to determine fit vs unfit definition based on survival times	low risk of selection bias but only AAA patients no multivariable analysis result reported for short term outcomes

			<b>Unfit:</b> RCRI >1 and $V_E/VCO_2$ >42, 55% survival at 2 years <b>Fit:</b> RCRI =1 and $V_E/VCO_2 \le 42$ , 97% survival at 2 years	

AAA = aortic abdominal aneurysm, aHR = adjusted hazard ratio, aOR = adjusted odds ratio, ASA = American Society of Anesthesiologists, AT = anaerobic threshold, AUC = area under the receiver operate curve, CI = confidence interval, CPET = cardiopulmonary exercise testing, HR = heart rate, MI = myocardial infarction,  $P_{EO2}$  = end-tidal oxygen concentration, RCRI = Revised Cardiac Risk Index, RER = respiratory exchange ratio of carbon dioxide production to oxygen consumption, SD = standard deviation, VCO₂ = carbon dioxide production rate,  $V_E$  = pulmonary minute ventilation, VO₂ = oxygen consumption rate.

Supplemental Table	• 17: GRADE quality asse	ssment for preoperativ	ve cardiopulmonary	exercise testing (CPET)
Supplemental Lasi	, I'' OIMIDL quanty above	soment for preoperation	ve caratopullionary	chercherchercherchercherchercherchercher

		Summary of evidence									
No. of participants (No. of studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Pooled estimate of effect (95% CI)	Quality of evidence				
ALL-CAUSE MORTALITY at long term (90 days-5 years)											
3139 patients (6 studies) ^{29, 31-35}	Serious limitation ⁽¹⁾	Serious limitation ⁽²⁾	No serious limitation	Serious limitation ⁽³⁾	Not detected	N/A	Low				
ALL-CAUSE MO	ORTALITY at 3	30 days									
706 patients (3 studies) ^{30, 31, 34}	Serious limitation ⁽¹⁾	No serious limitation	Serious limitation ⁽⁴⁾	Serious limitation ⁽³⁾	Suspected ⁽⁵⁾	N/A	Very low				
MAJOR CARDI	MAJOR CARDIOPULMONARY COMPLICATIONS										
291 patients (2 studies) ^{30, 31}	Serious limitation ⁽¹⁾	Serious limitation ⁽¹⁾	Serious limitation ⁽⁴⁾	Serious limitation ⁽³⁾	Suspected ⁽⁶⁾	N/A	Very low				

CI = confidence interval.

1. Failure to adequately control for known prognostic factors in multivariable analysis in certain studies, risk of selection bias

2. Wide variation in strength of association between CPET results and long-term mortality

3. Large confidence intervals in most studies

4. Cardiovascular complications not directly reported, combined with pulmonary complications

5. Most studies on CPET collected information on short-term mortality but the majority did not report estimate of effect (i.e., no analysis performed)

Author Year	Population	Total no. patients	Design	Cardiac stress test	Systematic outcome monitoring	Outcome results	Comments
STRESS EC	CHOCARDIO	GRAPHY					
Ballal 1999 ³⁶	vascular surgery	233	prospective cohort study	dobutamine stress echo- cardiography	yes	Major CV events – in hospital: Events/Total: 30/233 Ischemia on DSE : aRR 3.3 (95%CI, 1.6-6.82) p<0.01 other variables in the model: age, sex, Eagle criteria, LV function	major CV events: cardiac death, MI, and unstable or progressive angina requiring revascularization
Torres 2002 ³⁷	noncardiac mixed surgery	105	prospective cohort study	dobutamine stress echo- cardiography	troponin and CKMB obtained daily in the recovery and intensive care wards	Major CV events - in-hospital: Events/Total: 10/105 Abnormal DSE: aOR 40.5, p=0.002* other variables in the model: not specified	major cardiac events: acute coronary syndrome, MI or cardiac death potential risk of selection bias *no 95% CI provided
Day 2000 ³⁸	vascular and thoracic surgery	300	retrospective cohort study	dobutamine stress echo- cardiography	no	Major CV events – in hospital: Events/Total: 48/300 Resting wall motion abnormality: aOR 4.7, p=0.005* Hypotension during DSE: aOR 4.1. p=0.002* other variables in the model: age, gender, hypotensive response during stress test, arrhythmia induced by stress test	major CV events: in-hospital cardiac death, nonfatal MI, and myocardial ischemia. potential risk of selection bias *no 95% CI provided

## Supplemental Table 18: Summary of findings for preoperative pharmacological stress echocardiography and radionuclide imaging

Das 2000 ³⁹	non- vascular surgery	530	prospective cohort	dobutamine stress echo- cardiogram	post- operative serial cardiac enzyme values (frequency and duration not specified)	Major CV events*:           Events/Total: 32/530           Ischemic threshold < 60%:	*unclear duration of follow-up for outcome assessment major CV events: cardiac death or acute MI ischemic threshold was defined as the heart rate at which new echo- cardiographic wall motion abnormalities first occurred divided by the age-predicted maximal heart rate(220-age)
Lalka 1992 ⁴⁰	vascular surgery	60	prospective cohort	dobutamine stress echo- cardiography	yes	Major CV events – 30 days: Events/Total: 12/60Inability to achieve target heart rate >120 BPM during dobutamine infusion: significant increased risk of major CV events (p=0.004)*More severely abnormal DSE result: significant increased risk of with major CV events (p=0.012)*other variables in the model: uriables in the model: age >70 years, prior MI, CHF, cardiac symptoms, events during DSE (i.e., angina, abnormal ECG, heart rate $\leq 120$ )	*no estimate of effect reported for multivariable analysis, only p- value major CV events: cardiac death, nonfatal MI, unstable angina, or asymptomatic elevation of cardiac isoenzymes without ECG changes.

							potential risk of selection bias risk of model overfitting (i.e. small no. of events and large no. of predictors)
RADIONU	CLIDE IMAG	SING					
Hendel 1995 ⁴¹	vascular surgery	567	prospective cohort study	dipyridamole thallium	no	Major CV events – 30 days: Events/Total: 46/567 Transient defect in Men: aRR 3.9 (95% CI, 1.5-10.2) <u>other variables in the model:</u> diabetes, angina, Q wave, CHF, ST segment change Transient defect in Women: aRR 5.5 (95% CI, 1.4-22.0) <u>other variable in the model</u> : angina	major CV events: nonfatal MI and cardiac death potential risk of selection bias risk of model overfitting (i.e. small no. of events and large no. of predictors)
Stratmann 1996 ⁴²	elective vascular surgery	197	prospective cohort study	dipyridamole technetium- 99m sestamibi tomography	no	Major CV events after discharge or ≥30 days after surgery: Events/Total: 26/172 Reversible defect: aRR 2.7 (95% CI, 1.2-6.1) other variables in the model CHF, diabetes, past coronary revascularization, CAD, Q wave on ECG, chest pain during dipyridamole	major CV events: unstable angina, acute ischemic pulmonary edema, nonfatal MI, and cardiac death. risk of model overfitting (i.e. small no. of events and large no. of predictors)

Younis 1990 ⁴³	vascular surgery	111	prospective cohort study	dipyridamole thallium	no	Nonfatal MI and cardiac death - in hospital: Events/Total: 8/111 Perfusion defect perfusion defect was associated with an increased risk of MI/CV death (p=0.003)* other variables in the model: angina, chest pain, reversible thallium defect	potential risk of selection bias risk of model overfitting (i.e. small no. of events and large no. of predictors) *no estimate of effect provided
Vanzetto 1995 ⁴⁴	elective AAA surgery	134	prospective cohort study	dipyridamole thallium	CKMB twice daily for 3 days	Any cardiac events - in-hospital: Events/Total: 30/134 No. segments with reversible defect: significant increased risk of any cardiac events (p<0.001)* other variables in the model: history of myocardial infarction Major CV events: Events/Total: 12/134 No. segments with reversible defect: significant increased risk of major CV events p<0.001* other variables in the model: history of MI, anterior Q wave on the ECG, anterior ischemia on the ECG	any cardiac events: cardiac death or nonfatal MI, unstable angina, CHF, severe ventricular arrhythmias major cardiac events: cardiac death, nonfatal MI potential risk of selection bias *no estimate of effect provided
Marshall 1995 ⁴⁵	vascular surgery	122	prospective cohort study	adenosine radionuclide	no	Non-fatal MI or death: Events/Total: 27/122 No. of reversible defects:	*no estimate of effect provided

				perfusion imaging		significant increased risk of nonfatal MI and death (p=0.017)* <u>other variables in the model</u> : not specified	duration of follow- up not reported but all events occurred within first 2 days after surgery
Coley 1992 ⁴⁶	non- vascular surgery	100	retrospective cohort study	dipyridamole thallium scan	no	Major CV events*:         Events/Total: 9/100         Thallium redistribution:         aOR 14.6 (95% CI, 1.3-160.5)         other variables in the model: age, CHF	*duration of follow- up not reported cardiac death, nonfatal MI, unstable angina, pulmonary edema potential risk of selection bias risk of model overfitting (i.e. small no. of events and large no. of predictors)
Levinson 1990 ⁴⁷	vascular surgery	62	retrospective cohort study	dipyridamole thallium	no	Major CV events*:         Events/Total: 17/62         Redistribution in >1 view         significant increased risk of major CV         events (p<0.001)**	*duration of follow- up not reported major CV events: unstable angina pectoris, ischemic pulmonary edema, MI and cardiac death. **no estimate of effect provided

Chen 2002 ⁴⁸	vascular surgery	180	prospective cohort study	dipyridamole thallium	no	Major CV events*: Events/Total: 9/180Reversible defect: aOR 7.0 (95% CI, 1.7-28) p=0.0071*Reversible defect (low risk patient): aOR 11.6 (95% CI, 2.3-57.4) p=0.004other variables in the model: age, type of ASO, smoking, hyperlipidemia, HTN, diabetes, MI, history of angina, Goldman index, Detsky index, Intermediate-high risk	*duration of follow- up not reported major CV events: cardiac death, non-fatal MI, unstable angina, CHF risk of model overfitting (i.e. small no. of events and large no. of predictors)
Zarich 1995 ⁴⁹	peripheral vascular surgery in patients with diabetes	93	prospective cohort study	dipyridamole thallium	no	Nonfatal MI or death: Events/Total: 9/93 Total number of defects per scan Significant increased risk of nonfatal MI or death (p< 0.004)* <u>other variables in the mode</u> l: age, sex, number of thallium defects per scan, presence of reversible defects in the left anterior descending artery territory, prior MI, history of angina, history of CHF, hypertension, insulin use, and presence of pathological Q waves.	*no estimate of effect provided risk of model overfitting (i.e. small no. of events and large no. of predictors)
Hashimoto 2003 ⁵⁰	noncardiac surgery	481	retrospective cohort study	dipyridamole with ECG gating	yes	Major CV events – 30 days: Events/Total: 39/481 significant increased risk of with major CV events.* <u>other variables in the model</u> : age, diabetes mellitus	*no estimate of effect or p-value reported major CV events:

							cardiac death, nonfatal MI, unstable angina, CHF, and performance of revascularization
Baron 1994 ⁵¹	AAA repair	457	prospective cohort	dipyridamole thallium and gated radionuclide angiogram	yes	Major CV events – 30 days: Events/Total: 86/457 no independent association for EF < 50%, fixed thallium defect, and thallium redistribution other variables in the model: age, CAD	major CV events: prolonged myocardial ischemia patients, MI, CHF, and severe ventricular tachyarrhythmia blinded outcome assessment
Kontos 1996 ⁵²	mixed non- cardiac surgery	87	prospective cohort	dipyridamole thallium	CKMB and ECG for 4 days	Major CV events – 30 days: Events/Total: 14/87 after adjusting for other variables, stress test findings were not associated with outcome <u>other variables in the model</u> : adjusted for HTN, heart failure, class I Goldman, class 2-3 Goldman, and results on imaging (redistribution, abnormal dipyridamole, normal dipyridamole, abnormal LVEF)	major CV events : acute MI, cardiac death, or need for revascularization before surgery potential risk of selection bias risk of model overfitting (i.e. small no. of events and large no. of predictors)

Only studies which performed risk adjusted analysis were included.

AAA = abdominal aortic aneurysm, BPM = beats per minute, CAD = coronary artery disease, CI = confidence interval, CHF = congestive heart failure, CKMB = creatine kinase MB isoenzyme, CV = cardiovascular, DSE = dobutamine stress echocardiography, ECG = electrocardiogram, HTN = hypertension, LVEF = left ventricular ejection fraction, MI = myocardial infarction.

# Supplemental Table 19. GRADE quality assessment for preoperative pharmacological stress echocardiography and radionuclide imaging

			Summary of evidence							
No of patients (No. of studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Pooled AUC (95% CI)	Quality of evidence			
PHARMACOLOGICAL STRESS ECHOCARDIOGRAPHY										
MAJOR CARDIO	MAJOR CARDIOVASCULAR COMPLICATIONS									
1228 (5 studies) 36-40	Very serious limitation ⁽¹⁾	No serious limitation	No serious limitation	Serious limitation ⁽²⁾	Not detected	AUC 0.80 (0.76–0.84)	Low			
PHARMACOLO	GICAL STRESS	RADIONUCLID	E IMAGING							
DEATH AND NO	NFATAL MYOC	CARDIAL INFA	RCTION							
326 (3 studies) ^{43, 45, 49}	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	Serious limitation ⁽³⁾	Not detected	N/A	Low			
MAJOR CARDIOVASCULAR COMPLICATIONS										
2265 (9 studies) ^{41, 42, 44,} 46-48	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No serious limitation	Not detected	AUC 0.75 (0.70–0.80)	Moderate			

AUC = area under the receiver operator curve, CI = confidence interval, N/A = not available.

- 1. Most studies were at risk of selection bias, multivariable analysis failed to adjust for clinical risk factors and majority of multivariable models were at risk of being overfitted (i.e. very small number or events and high number of variables in the model which can result in inaccurate prediction⁵³)
- 2. Very small number of events in most studies and wide confidence intervals.
- 3. Studies did not report estimate of effect in publication and very small number of events

# Supplemental Table 20: Summary of findings for perioperative ASA initiation and continuation

Author year	Total no. patients	Population	Intervention and comparator	Systematic outcome monitoring	Results	Comments					
DEATH AN	DEATH AND NONFATAL MYOCARDIAL INFARCTION										
Devereaux 2014 ⁵⁴	10,010	noncardiac surgery	ASA 200 mg preoperatively and starting the day after surgery 100 mg daily versus placebo for 7 days (continuation stratum) or 30 days (initiation stratum)	troponin or CKMB were measured daily for first 3 days after surgery	Death and Nonfatal MI at 30 days Events/Total: ASA: 351/4998 (7.0%) Placebo: 355/5012 (7.1%) HR 0.99 (95% CI, 0.86–1.15) p=0.92	MI definition: Third universal definition of MI					
ALL-CAUS	SE MORT	ALITY	I								
Devereaux 2014 ⁵⁴	10,010	noncardiac surgery	see above	yes	Death at 30 days Events/Total: ASA: 65/4998 (1.3%) Placebo: 62/5012 (1.2%) HR 1.05 (95% CI, 0.74–1.49) p=0.78	POISE-2 included 5628 patients who were not previously taking aspirin and 4382 patients who were taking aspirin chronically but had stopped taking aspirin a median of 7 days before surgery					
PEP Trial 2000 ⁵⁵	13,356	hip fracture surgery	ASA 160 mg daily for 35 days started immediately after randomization before surgery	yes	Death at 35 days           Events/Total:           ASA: 447/6679 (6.7%)           Placebo: 461/6677 (6.9%)           HR 0.97 (95% CI, 0.85–1.10)	some patients were taking aspirin chronically but the number of patients was not reported					

CARDIAC	CARDIAC DEATH									
Devereaux 2014 ⁵⁴	10,010	noncardiac surgery	see above	yes	Cardiac death at 30 days Events/Total: ASA: 35/4998 (0.7%) Placebo: 35/5012 (0.7%) HR 1.00 (95% CI, 0.63–1.60) p=0.99	any death with a vascular cause and included those deaths following a MI, cardiac arrest, stroke, cardiac revasc. procedure (i.e., PCI or CABG), PE, hemorrhage, or deaths due to an unknown cause				
PEP Trial 2000 ⁵⁵	13,356	hip fracture surgery	see above	yes	Cardiac death at 30 days* Events/Total: ASA: 235/6679 (3.5%) Placebo: 252/6677 (3.8%) HR 0.93 (95% CI, 0.78–1.11)	* vascular death				
MYOCARI	DIAL INFA	ARCTION								
Devereaux 2014 ⁵⁴	10,010	noncardiac surgery	see above	troponin or CKMB were measured daily for first 3 days after surgery	MI at 30 days Events/Total: ASA: 309/4998 (6.2%) Placebo: 315/5012 (6.3%) HR 0.98 (95% CI, 0.84–1.15) p=0.85	MI definition: Third universal definition of MI				
PEP Trial 2000 ⁵⁵	13,356	hip fracture surgery	see above	no there was no systematic monitoring of cardiac	MI at 35 days*           Events/Total:           ASA: 105/6679 (1.6%)           Placebo: 79/6677 (1.2%)           HR 1.33 (95% CI, 1.00–1.78) p=0.05	* nonfatal MI and fatal ischemic heart disease				

				biomarkers after surgery		
DLEEDING	J					
Devereaux 2014 ⁵⁴	10 010	Noncardiac surgery	see above	yes	Major bleeding           Events/Total:           ASA: 230/4998 (4.6%)           Placebo: 188/5012 (3.8%)           HR 1.23 (95% CI, 1.01–1.49) p=0.04           Life-threatening bleeding           Events/Total:           ASA: 87/4998 (1.7%)           Placebo: 73/5012 (1.5%)           HR 1.19 (95% CI, 0.88–1.63) p=0.26	Bleeding predicted MI (HR 1.82, p<0.001) ASA increased risk of life threatening or major bleeding until day 8 after surgery
PEP Trial 2000 ⁵⁵	13,356	hip fracture surgery	see above	yes	Bleeding resulting in a transfusion Events/Total: ASA: 197/6679 (2.9%) Placebo: 157/6677 (2.4%) HR 1.24 (95% CI, 1.01–1.53) p=0.04	

ASA = acetylsalicylic acid, HR = hazard ratio, CABG = coronary artery bypass grafting, CKMB = creatine kinase MB isoenzyme, MI = myocardial infarction, PCI = percutaneous coronary intervention, PE = pulmonary embolism.

		Quality As		Summary of evidence					
No. of participants (No. of studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with ASA	Anticipated absolute effects without ASA	Estimate of effect HR (95% CI)	Quality of evidence
DEATH AND	DEATH AND NONFATAL MI – 30 days								
10,010 (1 study) ⁵⁴	No serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No serious limitation	Not detected	7.0%	7.1%	HR 0.99 (0.86–1.15)	High
MAJOR BLE	MAJOR BLEEDING								
10,010 (1 study) ⁵⁴	No serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No serious limitation	Not detected	4.6%	3.8%	HR 1.23 (1.01–1.49)	High

ASA = acid acetylsalicylic, CI = confidence interval, HR = hazard ratio.

1. Adequate allocation concealment and blinding, performed systematic outcome monitoring, blinded outcome adjudication, intention-to-treat analysis, and minimal loss to follow-ups (11 patients).

* GRADE quality assessment table based on POISE-2 results because more reflective of noncardiac surgery and systematically monitored for MI.

Author Year	Design	Total No. Patients (No. of studies)	Eligibility criteria	Results	Comments
ALL-CAUSE	MORTALITY	-			
Wijeysundera 2014 ⁵⁶	systematic review and meta- analysis of RCTs	10,785 (14 trials)	<ul> <li>comparison: perioperative β-blockade against placebo or standard care</li> <li>adults undergoing noncardiac surgery</li> <li>sample size &gt;100</li> <li>β-blocker started at any point between 45 days prior to surgery and 24h after surgery.</li> <li>treatment had to be continued until hospital discharged or second day after surgery</li> </ul>	All-cause mortalityEvents/Total: β-blocker: 161/5394 (3.0%)No β-blocker: 126/5391 (2.3%)RR 1.30 (95% CI, 1.03-1.63)heterogeneity: $I^2$ =0%, p=0.63	results excluding trials by Poldermans
CARDIAC M	ORTALITY				
Wijeysundera 2014 ⁵⁶	see above	10,648 (12 trials)	see above	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	results excluding trials by Poldermans
MYOCARDIA	AL INFARCTI	ON			

## Supplemental Table 22: Summary of findings for perioperative β-blocker initiation

Wijeysundera 2014 ⁵⁶	see above	10,785 (14 trials)	see above	Non-fatal MIEvents/Total :β-blocker: 181/5394 (3.4%)No β-blocker: 256/5391 (4.7%)RR 0.72 (95% CI, 0.59 – 0.86)heterogeneity: $I^2$ =0% p=0.837	non-fatal MI in-hospital or 30-day results excluding trials by Poldermans
STROKE					
Wijeysundera 2014 ⁵⁶	see above	10,545 (9 trials)	see above	Non-fatal StrokeEvents/Total : $\beta$ -blocker: 40/5274 (0.8%)No β-blocker: 21/5271 (0.4%)RR 1.86 (95% CI, 1.09–3.16)heterogeneity: not reported	non-fatal stoke in-hospital or 30-day results excluding trials by Poldermans heterogeneity $I^2=0\%$

CI = confidence interval, MI = myocardial infarction, RCT = randomized controlled trial, RR = relative risk.

	Quality Assessment							Summary of Evidence			
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with β-blocker	Anticipated absolute effects without β- blocker	Pooled Estimate RR (95% CI)	Quality of evidence		
ALL CAUSE	MORTALI	ТҮ									
10,785 (14 trials) ⁵⁶	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Less likely	3.0%	2.3%	RR 1.30 (1.03-1.63)	High		
CARDIAC M	CARDIAC MORTALITY										
10,648 (12 trials) ⁵⁶	No serious limitation	Unclear ⁽¹⁾	No serious limitation	No serious limitation	Less likely	1.7%	1.3%	RR 1.25 (0.92-1.71)	Moderate		
MYOCARDI	AL INFAR(	CTION									
10,785 (14 trials) ⁵⁶	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Less likely	3.4%	4.7%	RR 0.72 (0.59-0.86)	High		
STROKE											
10,545 (9 trials) ⁵⁶	No serious limitation	No serious limitation	No serious limitation	Serious limitation ⁽²⁾	Less likely	0.8%	0.4%	RR 1.86 (1.09-3.16)	Moderate		

## Supplemental Table 23: GRADE quality assessment for perioperative $\beta$ -blocker initiation

CI = confidence interval, RR = relative risk.

Heterogeneity not reported
 Wide Confidence Interval

Author	Design	Population	Total	Intervention	Systematic	Results	Comments
year			no. natients		outcome		
			putients		monitoring		
Kwon 2012 ⁵⁷	retrospective cohort study	patients with history of taking a BB who were undergoing elective colon/rectal or bariatric procedures	1975	BB continued: preoperatively within 24 hours of surgery or before leaving the post- anesthesia care unit n=1302 BB missed on the day of surgery n=673	yes	In-hospital Mortality Continuation: 1.1% Missed: 1.6% p=0.29 no risk-adjusted analysis30-day Mortality Continuation: 1.2% Missed: 2.2% p=0.09 no risk-adjusted analysis	
Wallace 2010 ⁵⁸	retrospective cohort	noncardiac surgery; patients with cardiac risk, or CAD, or PVD, who had inpatient surgery	12,105	BB withdrawal: BB preoperatively, no BB postoperatively BB continued: BB preoperatively and BB postoperatively	yes	All-cause mortality at 30 days         BB addition:         aOR 0.58 (95% CI, 0.37-0.92) p=0.02         BB continued:         aOR 0.74 (95% CI, 0.51-1.05) p=0.09         BB withdrawal:         aOR 3.57 (95% CI, 2.31-5.52) p<0.0001	propensity score matched analysis for noncardiac surgery only

Supplemental Table 24: Summary of findings for perioperative β-blocker continuation

 $aOR = adjusted odds ratio, BB = \beta$ -blocker, CI = confidence interval, CAD = coronary artery disease, CI = confidence interval, PVD = peripheral vascular disease, OR = odds ratio.

#### Supplemental Table 25: GRADE quality assessment for perioperative β-blocker continuation

		Quality A	Summary of Evidence						
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with β-blocker	Anticipated absolute effects without β- blocker	Estimate aOR (95% CI)	Quality of evidence
30 DAY MOI	RTALITY								
12,105 (1 study) ⁵⁸	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No serious limitation	Possible ⁽²⁾	1.2%	2.2%	BB continued: aOR 0.74 (0.51-1.05) BB withdrawal: aOR 3.57 (2.31-5.52)	Very Low

 $aOR = adjusted odds ratio, BB = \beta$ -blocker, CI = confidence interval.

- High risk of bias. Patients who had β-blocker withdrawn preoperatively may have had worse medical conditions that warrant β-blocker discontinuation (e.g., infection leading to hypotension). Retrospective cohort study. Database review. No systematic monitoring of perioperative β-blocker administration and postoperative outcomes. Small events numbers.
- 2. Very few articles published on this topic.

Supplemental Table 26: Summary of findings for preoperative initiation of  $\alpha_2$ -agonist

Author year	Design	No. patients (no. studies)	Population / type of surgery	Intervention and comparator	Systematic outcome monitoring	Results	Comments
ALL-CAUSE	MORTALIT	Y					
Devereaux 2014 ⁵⁹	RCT	10,010 (1 RCT) 5009 clonidine 5001 placebo	noncardiac surgery, known vascular disease or risk factors >45 years	clonidine orally 1 hour before surgery and transdermal for 72 hours	yes (mortality)	All-cause mortality at 30 days Events/Total: Clonidine: 64/5009 (1.3%) Placebo: 63/5001 (1.3%) HR 1.01 (95% CI, 0.72–1.44) p=0.94	
Wijeysundera 2009 ⁶⁰	systematic review and meta- analysis of RCTs	2851 (9 trials)	noncardiac surgery	different α ₂ - agonists	unclear	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	incidence dominated by one trial of mivazerol
MORTALITY	AND NONE	TATAL MY	OCARDIAL	INFARCTION			
Devereaux 2014 ⁵⁹	RCT	see above	see above	see above	troponin or CKMB were measured daily for first 3 days after surgery	Death or nonfatal MI at 30 days Clonidine: 367/5009 (7.3%) Placebo: 339/5001 (6.8%) HR 1.08 (95% CI, 0.93–1.26) p=0.29	composite of death or nonfatal MI ≤30 days postoperatively MI definition: Universal definition of MI
VASCULAR	MORTALITY	Y					
Devereaux 2014 ⁵⁹	RCT	see above	see above	see above	yes	Vascular death at 30 days Events/Total:	death following cardiac or vascular event

						Clonidine: 38/5,009 (0.8%) Placebo: 32/5,001 (0.6%)	
						HR 1.08 (95% CI, 0.74–1.90)	
						p=0.48	
Wijeysundera 2009 ⁶⁰	see above	2,515 (4 RCTs)	see above	see above	unclear	Cardiac mortality           Events/Total           Alpha-2: 15/1,308 (1.1%)           Control: 29/1,207 (2.4%)           RR 0.51 (95% CI, 0.27-0.93)           p=0.03           no measurable heterogeneity	incidence dominated by one trial of mivazerol
NONDATAL			CTION				
NONFATAL	MYOCARDI	AL INFAR	CTION				
Devereaux 2014 ⁵⁹	see above	see above	see above	see above	yes	Non-fatal MI at 30 days           Events/Total:           Clonidine: 329/5,009 (6.6%)           Placebo : 295/5,001 (5.9%)           HR 1.11 (95% CI, 0.95-1.30)           p=0.18	see above
Wijeysundera 2009 ⁶⁰	see above	2,817 (8 RCTs)	see above	see above	unclear	Non-fatal MI           Events/Total:           Alpha-2: 178/1,490 (11.9%)           Control: 95/1,327 (7.2%)           RR 0.49 (95% CI, 0.22-1.09)           p=0.08           moderate heterogeneity	incidence dominated by one study of mivazerol
SIDE EFFEC	ГS						
Devereaux 2014 ⁵⁹	RCT	see above	see above	see above	yes	Hypotension Events/Total:	clinically important hypotension (SBP<90)

						Clonidine: 2385/5009 (47.6%) Placebo: 1854/5001 (37.1%) HR 1.32 (95% CI 1.24-1.40) p<0.001	or bradycardia (heart rate<55) requiring treatment or study drug discontinuation
						Bradycardia           Events/Total:           Clonidine: 600/5009 (12.0%)           Placebo: 403/5001 (8.1%)           HR 1.49 (95% CI, 1.32–1.69)           p<0.001	
Wijeysundera 2009 ⁶⁰	see above	2845 (10 RCTs)	see above	see above	unclear	Hypotension           RR 1.32 (95% CI, 1.07-1.62)           p=0.009           Moderate heterogeneity           Bradycardia           RR 1.44 (95% CI, 0.89-2.31)	

BP = blood pressure, ECG = electrocardiogram, HR = hazard ratio, MI = myocardial infarction, SBP = systolic blood pressure, RCT = randomized controlled trial, RR = risk ratio.

Supplemental Table 27: GRADE of	uality assessment for r	preoperative α2-agonis	t initiation*

		Quality A	Summary of Evidence						
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with α ₂ -agonist	Anticipated absolute effects without α ₂ - agonist	Estimate HR (95% CI)	Quality of evidence
ALL-CAUSE	C MORTALI	TY							
10,010 (1 study) ⁵⁹	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Not detected	1.3%	1.3%	HR 1.01 (0.72–1.44)	High
MYOCARDI	MYOCARDIAL INFARCTION								
10,010 (1 study) ⁵⁹	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Not detected	7.3%	6.8%	HR 1.11 (0.95–1.30)	High
CARDIAC/V	ASCULAR	MORTALITY							
10,010 (1 study) ⁵⁹	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Not detected	0.8%	0.6%	HR 1.08 (0.74–1.90)	High
HYPOTENS	ION								
10,010 (1 study) ⁵⁹	No serious limitation	No serious limitation	No serious limitation	No serious limitation	Not detected	47.6%	37.1%	HR 1.31 (1.24–1.40)	High

CI = confidence interval, HR = hazard ratio.

* GRADE quality assessment table based on POISE-2 results because more reflective of noncardiac surgery and systematically monitored for MI.

# Supplemental Table 28: Summary of findings for perioperative calcium channel blocker initiation

Author	Design	Eligibility Criteria	No. of studies for each type of surgery (no. patients)	Total No. Patients (No. studies)	Results	Comments
ALL-CAUSE	MORTALIT	Ŷ				
Wijeysundera 2003 ⁶¹	Systematic review of RCTs	published RCTs evaluating CCBs administered immediately before, during or after surgery within 48hrs and reported on death, MI, ischemia and supraventricular tachyarrythmia	2 mixed or major general (n=126) 1 orthopedic (n=50) 5 thoracic (n=682) 1 urologic (n=58) 1 vascular (n=30) (no. type of surgery and patients in overall systematic review)	692 patients (5 trials reporting on all-cause mortality)	Death Events/Total: CCB: 5/358 (1.4%) No CCB: 12/334 (3.6%) RR 0.40 (95% CI, 0.14-1.16) heterogeneity p=0.54	prevalence of pre- operative $\beta$ -blocker use was 13% (62/493) in 3 trials, $\beta$ -blockers were specific exclusion criterion no relationship between $\beta$ - blocker use and assignment to CCB arm overall
DEATH AND	NON-FATA	L MYOCARDIAL INFAI	RCTION COMPOSITE	2		
Wijeysundera 2003 ⁶¹	see above	see above	see above	692 patients (5 trials reporting on death and nonfatal MI)	Death and MI           RR 0.35 (95% CI, 0.15-0.86)           p=0.02           heterogeneity p=0.90	no standard definition for peri-operative MI number of events not reported for this composite outcome
MYOCARDIA	AL INFARC	TION				

Wijeysundera 2003 ⁶¹	see above	see above	see above	486 patients (6 trials reporting on MI)	MI (6 trials): Events/Total: CCB: 0/252 (0%) No CCB: 5/234 (2.1%) RR 0.25 (95% CI, 0.05-1.18) p=0.08 heterogeneity p=0.99	no standard definition for peri-operative MI
ISCHEMIA						
Wijeysundera 2003 ⁶¹	see above	see above	see above	263 patients (6 trials reporting on ischemia)	Ischemia (6 trials):         Events/Total:         CCB: 18/133 (13.5%)         No CCB: 36/130 (27.7%)         RR 0.49 (95% CI, 0.30-0.80) $p=0.004$ heterogeneity $p=0.10$ Ischemia – Diltiazem only         RR 0.34 (95% CI, 0.18-0.63) $p=0.0005$ heterogeneity $p=0.39$ Ischemia – Nifedipine only         (1 trial)         RR 1.85 (95% CI, 0.64-5.35) $p=0.26$ Ischemia – Verapamil only         (1 trial)         RR 0.15 (95% CI, 0.01-2.70) $p=0.20$	one study reporting on ischemia alone required withholding of all antianginals for at least 24 hours pre-op. No effect on estimate of effect.

HYPOTENSI	ON					
Wijeysundera 2003 ⁶¹	see above	see above	see above	341 patients (4 trials reporting on hypotension )	<u>Hypotension (4 trials)</u> : Events/Total: 28/341 (8%) RR 1.74 (95% CI, 0.28- 10.81) p=0.55 heterogeneity p=0.05	in subgroup analysis, only verapamil was not associated with hypotension
BRADYCARI	DIA					
Wijeysundera 2003 ⁶¹	see above	see above	see above	605 patients (4 trials reporting on bradycardia)	Bradycardia (4 trials): Events/Total: 35/605 (8%) RR 3.32 (95% CI, 0.70- 15.66) p=0.13 heterogeneity p=0.07	in subgroup analysis, only verapamil was not associated with bradycardia

CI = confidence interval, CCB = calcium channel blocker, CHF = congestive heart failure, MI = myocardial infarction, RCT = randomized controlled trial, RR = relative risk.

Quality Assessment						Summary of Evidence			
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with CCB	Anticipated absolute effects without CCB	Pooled Estimate RR (95% CI)	Quality of evidence
ALL CAUSE MORTALITY									
692 patients (5 trials) ⁶¹	Serious limitation	No serious limitation	No serious limitation	Very serious limitation ⁽²⁾	Likely ⁽³⁾	1.4%	3.6%	RR 0.40 (0.14-1.16)	Very low
DEATH AND NON-FATAL MYOCARDIAL INFARCTION COMPOSITE									
692 patients (5 trials) ⁶¹	Serious limitation	No serious limitation	No serious limitation	Very serious limitation ⁽²⁾	Likely ⁽³⁾	N/A	N/A	RR 0.35 (0.15-0.86)	Very low
MYOCARDIAL INFARCTION									
486 patients (6 trials) ⁶¹	Serious limitation	No serious limitation	No serious limitation	Very serious limitation ⁽²⁾	Likely ⁽³⁾	0%	2.1%	RR 0.25 (0.05-1.18)	Very low
HYPOTENSION									
341 patients (4 trials) ⁶¹	Serious limitation	No serious limitation	No serious limitation	Very serious limitation ⁽²⁾	Likely ⁽³⁾	N/A	N/A	RR 1.74 (0.28-10.81)	Very low

CCB = calcium channel blocker, CI = confidence interval, N/A = not available, RR = relative risk.

1. Only half the studies double blinded, and only one performed allocation concealment
- All studies were small with very few events (17 deaths total)
   Marked geographic variation in studies suggesting possible publication bias
   Heterogeneity partially accounted for by effect of diltiazem

Supplemental Table 30: Summary of findings for withholding ACEI/ARB in the noncardiac surgery setting

Author	Total no. patients	Design; population	Intervention and comparator	Outcome definition	Systematic outcome monitorin g	Results	Comments
HYPOTE	NSION						
Coriat 1994 ⁶²	51	RCT vascular surgery patients chronically treated for HTN with enalapril or captopril	captopril continued (n=17), enalapril continued (n=9), captopril withdrawn 12h preop (n=19), enalapril withdrawn 24h preop (n=11)	lowest BP within 10 min after induction and before surgical intervention lowest mean BP SBP < 90 at induction	yes	Iowest SBP (mmHg) – Mean±SDEnalapril: 71±10 (cont) vs 100±15 (stop) Captopril: 86±11 (cont) vs 101±21 (stop)Lowest mean BP (mmHg) – Mean±SDEnalapril: 48±8 (cont) vs 69±15 (stop) Captopril: 58±9 (cont) vs 69±17 (stop)SBP < 90 at induction ACEI or ARB : 16/21 (cont) vs 6/30 (stop) p<0.001 RR 3.81 (95% CI 1.79-8.10)	risk of co-intervention bias as care givers were probably not blinded to intervention. However, no difference in mean dose of ephedrine between groups. unclear risk of outcome detection bias, frequency and method of BP recording not mentioned unclear allocation concealment and blinding not intention to treat analysis
Betrand 2001 ⁶³	37	RCT vascular surgery patients chronically	ARB given 1h before anesthesia (n=19) vs ARB discontinued	<u>Hypotension</u> SBP <80 lasting >1 min <u>Refractory</u> <u>hypotension</u>	yes	Hypotension           At least one episode (no.):           19/19 (cont) vs 12/18 (stop)           p<0.01	unclear risk of co- intervention bias unclear allocation concealment and blinding

		treated with ARB	1 day before surgery (n=18)	SBP<100 despite vasopressor (up to 24 mg ephedrine or 100 ug phenylephrine) and requiring terlipressine		Episode of hypotension (no.) - mean±SD2±1 (cont) vs 1±1 (stop) p<0.01Duration of episode (min) - mean±SD8±7 (cont) vs 3±4 (stop) p<0.01Refractory hypotension 6/19 (cont) vs 0/18 (stop) p<0.01	
Schirmer 2007 ⁶⁴	100	RCT; elective ENT surgery chronically treated with enalapril or captopril for HTN	ACEI given on morning of surgery versus ACEI last dose day before surgery	<u>Hypotension</u> Mean arterial BP <60	yes	<u>Hypotension</u> 17/50 (cont) vs 5/50 (stop) p=0.007 RR 3.40 (95% CI 1.36-8.50)	publication in German unclear allocation concealment
COMPOSI	TE CARD	DIAC COMPLI	CATIONS		·		
Betrand 2001 ⁶³ MYOCAR	37 DIAL INF	RCT; Vascular surgery patient chronically treated with ARB	ARB given 1h before anesthesia (n=19) versus ARB discontinued 1 day before surgery (n=18)	Composite of cardiac complications	yes	Cardiac events: 1/19 (cont) vs 1/18 (stop) one unstable angina and one myocardial ischemia	very low number of events unclear allocation concealment and blinding
Khatarnal	17 759	ratrospactiva	Chronic	some $TnI > v5$	no	MI of 7 dove	proponsity sooro
2008 ⁶⁵	17,750	cohort, registry database	ACEI-ARB therapy versus no	ULN within the first 4 post- operative days		ACEI: 36/5,073 (0.7%) No ACEI: 44/6,828 (0.6%) OR 1.10 (95% CI 0.71-1.71)	matching but no further covariate adjustment performed

adult general surgery requiring general anesthesiachronic ACEI/ARB therapywith associated cardio- pulmonary symptomshigh troponin elevation threshold to define M	sociated ary ms
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------

ACEI = angiotensin-converting enzyme inhibitor, ARB = angiotensin receptor blocker, BP = blood pressure, cont = medication continued on the day of surgery, ENT = ears, nose and throat, HTN = hypertension, MI = myocardial infarction, preop = preoperatively, OR = odds ratio, RCT = randomized controlled trial, RR = relative risk, SBP = systolic blood pressure, SD = standard deviation, stop = medication interrupted on the day of surgery, TnI = troponin I, ULN = upper limit of normal.

		Quality Ass	Summary of Evidence						
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with ACEI/ ARB	Anticipated absolute effects without ACEI/ ARB	Estimate RR (95% CI)	Quality of evidence
MYOCARDIA	L INFARCTION								
17,758 (1 study) ⁶⁵	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No serious limitation	Not detected	0.7%	0.6%	OR 1.10 (0.71-1.71)	Very Low
HYPOTENSIO	N	·							
188 (3 studies) ⁶²⁻⁶⁴	Serious limitation ⁽²⁾	No serious limitation	No serious limitation	Serious limitation ⁽³⁾	Potential ⁽⁴⁾	57.8%	23.5%	RR 2.53 (1.08-5.93)	Low

#### Supplemental Table 31: GRADE quality assessment for withholding ACEI/ARB in the noncardiac surgery setting

ACEI = angiotensin-converting enzyme inhibitor, ARB = angiotensin receptor blocker, CI = confidence interval, RR = Relative Risk, OR = odds ratio.

1. High risk of bias: risk of selection bias (i.e., patients treated with ACEI systematically different than patients not on ACEI on other aspects than just medication, potentially not captured by propensity score matching); no data on medication intake on the morning of surgery in the treated group, outcome detection bias due to definition of MI.

2. 3 trials with unclear allocation concealment and unclear blinding, 1 trial did not performed analysis with intention-to-treat principle, risk of co-intervention bias with hypotensive therapy

3. Very low number of events

4. Very few published trials

<b>Supplemental</b>	Table 32.	<b>Summary</b>	of findings	for preo	perative	statin initiation
~ rr			<b>-----------</b> - <b>--</b> - <b>-</b> - <b>--</b>			

Author year	Design	Eligibility criteria	Total No. patients (no studies)	Exposure of interest vs comparator	Results	Comments
MORTALI	ГҮ					
Sanders 2013 ⁶⁶	systematic review and meta-analysis of RCTs	adult who were scheduled for elective or emergency noncardiac arterial vascular surgery, including both open and endovascular procedures	178 patients (3 trials)	studies that have prescribed statins of any type, dose, commenced de novo or with existing users randomly assigned to different dosages	All-cause mortality Events/Total: Statin: 7/105 (6.7%) No statin: 10/73 (13.7%) RR 0.73 (95% CI, 0.31-1.75) heterogeneity: not applicable	only 1 trial had events, other 2 trials had no events in both groups excluded trials from Poldermans' group
NONFATAI	L MYOCARDI	AL INFARCTION				
Sanders 2013 ⁶⁶	see above	see above	178 patients (3 trials)	see above	Nonfatal MI           Events/Total           Statin: 4/105 (3.8%)           No statin: 8/73 (11.0%)           RR 0.47 (95% CI, 0.15-1.52)           heterogeneity: $I^2=0\%$	excluded trials from Poldermans' group

CI = confidence interval, MI = myocardial infarction, RCT = randomized controlled trial, RR = relative risk.

### Supplemental Table 33: GRADE quality assessment for preoperative statin initiation

		Quality As	Summary of Evidence						
No of patients (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with statin	Anticipated absolute effects without statin	RR (95% CI)	Quality of evidence
ALL-CAUSE N	MORTALITY	7							
178 (3 trials) ⁶⁶	No serious limitation	Unclear ⁽¹⁾	No serious limitation	Serious limitation ⁽²⁾	Unlikely	6.7%	13.7%	RR 0.73 (0.31-1.75)	Low
MYOCARDIA	MYOCARDIAL INFARCTION								
178 (3 trials) ⁶⁶	No serious limitation	No serious limitation	No serious limitation	Serious limitation ⁽²⁾	Unlikely	3.8%	11.0%	RR 0.47 (0.15-1.52)	Moderate

CI = confidence interval, RR = relative risk.

1. Estimate of effect based on only one study (all 17 events occurred in the same study)

2. Very small number of events and confidence intervals cross the point of no effect

Supplemental	Table 24	Summon	of finding	ra fan na	mionorativa	statin continuati	ion
Supplemental	1 1 able 343	Summary	or munip	28 IOF PE	erioperative	staum comunuau	UII

Author year	Design	Population	Total no. patients	Exposure of interest vs comparator	Systematic outcome monitoring	Results	Comments
Xia 2015 ⁶⁷	RCT	noncardiac surgery patients with stable CAD on long-term statin therapy	550	rosuvastatin (20 mg loading) or placebo 2 h prior to their surgery	CK, CK- MB, and troponin T were collected at 6, 12, and 24h after surgery	Myocardial infarction at 30 days Events/Total: Statin: 10/275 (3.6%) Placebo: 22/275 (8.0%) RR 0.45 (95% CI, 0.22-0.94) p=0.02	MI was defined as ischemia due to a primary coronary event, such as plaque erosion and/or rupture, fissuring, or dissection

CAD = coronary artery disease, CI = confidence interval, RCT = randomized controlled trial, RR = relative risk.

### Supplemental Table 35: GRADE quality assessment for perioperative statin continuation

		Quality Ass	Summary of Evidence						
No of patients (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with statin	Anticipated absolute effects without statin	RR (95% CI)	Quality of evidence
MYOCARDIA	L INFARCTIO	ON							
550 (1 study) ⁶⁷	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	No serious limitation	Unlikely	3.6%	8.0%	RR 0.45 (0.22-0.94)	Moderate

CI = confidence interval, RR = relative risk.

1. Randomization using sealed envelope at risk of unblinding of allocation concealment, unclear randomization method, risk of outcome detection bias due to unclear definition of MI

Supr	olemental	l Table	36:	<b>Summary</b>	of fir	ndings	for	preoi	perative	coronary	v revascu	larization
~~~rr			••••		~			P				

Author year	No. patients	Population/ type of surgery	Intervention and comparator	Outcome definition	Systematic outcome monitoring	Results	Comments
ALL-CAU	SE MORTA	LITY					
McFalls 2004 ⁶⁸ (CARP Trial)	510	vascular surgery (AAA vs PAD)	revascularization (PCI or CABG) (n=258) vs. medical therapy (n=252)	all-cause mortality at median follow- up of 2.8 years (IQR, 1.7-3.9)	yes	Death BEFORE vascular surgery Intervention: 10/225 (4.4%) Control: 1/237 (0.4%) All-cause mortality at 30 days Intervention: 7/225 (3.1%) Control: 8/237 (3.4%) p=0.87 Long term mortality Intervention: 70/225 (31%) Control: 67/237 (28.3%) RR 0.98 (95% CI, 0.70-1.37) p=0.92	no difference in mortality but significant delay in surgery – 54 vs. 18 days **exclusion of left main disease 50% or greater blinded outcome assessment no, but stopped early for slow recruitment and reduced length of follow-up
Illuminati 2015 ⁶⁹	426	patients undergoing CEA with no apparent evidence of CAD, normal ECG, and a normal echo- cardiography	coronary angiography before CEA (n=216) vs. CEA performed without coronary angiography (n=210)	myocardial infarction and all-cause mortality	yes median length of follow-up was 6.2 years.	All-cause mortality at 30 days Intervention: 0/216 (0%) Control: 2/210 (1.0%) p=0.24	among 216 patients assigned to coronary angiography before CEA, 68 (31%) had significant CAD on angiography, and 66 of these patients had PCI and then while still taking aspirin and clopidogrel underwent CEA a mean of 4 days

							later and 2 had CABG and CEA combined
MYOCAR	DIAL INFA	RCTION			1		- -
McFalls 2004 ⁶⁸ (CARP Trial)	510	vascular surgery (AAA vs PAD)	revascularization (PCI or CABG) (n=258) vs. medical therapy (n=252)	all-cause mortality at median f/u 2.8y (IQR, 1.7-3.9)	yes	MI at 30 days Intervention: 19/225 (8.4%) Control: 20/237 (8.4%) p=0.99	 **exclusion of left main disease 50% or greater blinded outcome adjudication no, but stopped early for slow recruitment and reduced f/u
Illuminati 2015 ⁶⁹	426	patients undergoing CEA without a previous CAD, normal ECG, normal echocardiograp hy	preoperative coronary angiography (n=216) vs. no preoperative coronary angiography (n=210)	Third universal definition of MI	Yes, trop measured ad 24h after surgery	MI at 30 days Intervention: 0/216 (0%) Control: 9/210 (4.3%) OR 0.22 (95% CI, 0.06-0.81) p=0.01	 ****In the coronary angiogram group: 68 (31.5%) had significant CAD stenosis; 66 had PCI and 2 had CABG
STROKE							
Illuminati 2015 ⁶⁹	426	patients undergoing CEA without a previous CAD, normal ECG, normal echocardiograp hy	preoperative coronary angiography (n=216) vs. no preoperative coronary angiography (n=210)		Unclear	Stroke at 30 days Intervention: 1/216 (0.5%) Control: 2/210 (1.0%) p=0.62	

AAA = aortic abdominal aneurysm, CABG = coronary artery bypass graft, CAD = coronary artery disease, CEA = carotid endarterectomy, CI = confidence interval, ECG = electrocardiogram, HR = hazard ratio, MI = myocardial infarction, PAD = peripheral artery disease, PCI = percutaneous coronary intervention.

C	T-LL 27.		1.4	4 f			·
Nunniementai	I Shie S/		ntv accecemen	t tor nreo	neranve coro	narv revacenta	rization
Supplemental	\mathbf{I} and \mathbf{J}	UNADE qua	nuv assussmun		p_{α}	mai v i cvascula	nizanon
11				· · · ·	1	v	

		Quality As	Summary of Evidence						
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with interventio n	Anticipated absolute effects without intervention	Pooled Estimate RR (95% CI)	Quality of evidence
ALL CAUSE N	IORTALITY	Y at 30 days							
888 patients (2 studies) ^{68, 69}	No serious limitation	No serious limitation	Serious limitation ⁽¹⁾	Serious limitation ⁽²⁾	Unlikely	1.6% (7/441)	2.2% (10/447)	RR 0.79 (0.31-2.04)	Low
MYOCARDIA	L INFARCI	TON at 30 days							
888 patients (2 studies) ^{68, 69}	No serious limitation	Serious limitation ⁽³⁾	No serious limitation	Serious limitation ⁽²⁾	Unlikely	4.3% (19/441)	6.5% (29/447)	RR 0.30 (0.01-6.65)	Low

CI = confidence interval, N/A = not available, RR = relative risk.

1. Only includes vascular surgery patients

2. Very large CI, small number of events

3. One study showed no effect and the other a large magnitude of effect.

Supplemental	Table 3	8: Summary o	of findings	for preo	perative smoki	ng cessation
~~pp				p		

Author year	No. patients	Population/ type of surgery	Design	Intervention and comparator	Systematic outcome monitoring	Results	Comments
CARDIOVA	SCULAR	EVENTS		·			
Lindstrom 2008 ⁷⁰	117	general and orthopedic, daily smokers >2 cigarettes daily for ≥ 1year	RCT	weekly smoking cessation counselling with nicotine replacement therapy, 4 weeks before surgery and 4 weeks after surgery versus standard of care	unclear	Cardiovascular complications Intervention: 1/48 (2.1%) Control: 1/54 (1.9%) p=1.00	15 post-randomization exclusion CV complications included MI, stroke, TIA, DVT and PE stopped early for slow recruitment
Moller 2002 ⁷¹	120	orthopedic, daily smoker	RCT	weekly smoking cessation counselling and nicotine replacement therapy 6–8 weeks before and 10 days after surgery, vs standard of care	unclear	MI or CHF at 1 month* Intervention: 0/56 (0%) Control: 5/52 (9.6%) no analysis	12 post-randomization exclusion not intention-to-treat analysis *MI and CHF definition not reported

Thomsen 2010 ⁷²	130	patients scheduled for breast cancer surgery, daily smokers	RCT	smoking cessation counselling therapy with nicotine replacement 3- 7 days before surgery, versus standard therapy	unclear	Major CV events at 30 days Events/Total Intervention: 2/57 (3.5%) Control: 1/62 (1.6%) no analysis	major CV events definition not reported
Wong 2012 ⁷³	286	adults undergoing elective mixed noncardiac surgery seen in preoperative clininc, smokers ≥10 cigarettes per day during the previous year, and had no period of smoking abstinence longer than 3 months	RCT	varenicline versus placebo, started 1 week before surgery and continued for a total of 12 weeks	yes	Major CV events in hospital Events/Total Intervention: 2/151 (1.3%) Control: 4/135 (3.0%) p=0.43	definition of major CV events non reported
SMOKINO	G CESSATIO	DN					
Thomsen 2014 ⁷⁴	Systematic review meta-analys of RCTs	c RCTs of smu undergoing elective surg who were	okers gery	1251 (9 trials) in g r s	ntervention groups eceived moking	<u>Smoking cessation at time of</u> <u>surgery</u> Events/Total (%)	treatment effects demonstrated heterogeneity that was mainly explained by the

	randomized to a	cessation	Intensive intervention: 55/104	intensity of the
	smoking cessation	counselling	(52.9%)	intervention.
	intervention at	and nicotine	Control: 5/106 (4.7%)	
	least 48 hours	replacement	RR 10.76 (95% CI: 4.55-	intense interventions
	before surgery or	treatment	25.46)	included weekly face-to-
	control	Control groups	heterogeneity: $I^2 = 0\%$	face or telephone
		received		counselling at least 4
		standard care	Brief intervention: 307/615	weeks before surgery and
		with little or no	(50%)	used nicotine replacement
		information on	Control: 202/526 (38.4%)	therapy
		smoking	RR 1.30 (95% CI, 1.16-1.46)	
		cessation	Heterogeneity: $I^2 = 75\%$	brief interventions
				included one counselling
			Smoking cessation at 12	session and some trials
			<u>month follow-up</u>	also offered nicotine
			Intensive intervention: 31/104	replacement therapy to
			(29.8%)	some patients
			Control: 11/105 (10.5%)	
			RR 2.96 (95% CI, 1.57-5.55)	
			heterogeneity: $I^2=38\%$	
			Brief intervention: 29/166	
			(17.5%)	
			Control: 28/175 (16.0%)	
			RR 1.09 (95% CI, 0.68-1.76)	
			neterogeneity: <i>I</i> ² =0%	
	1			

CHF = congestive heart failure, CI = confidence interval, CV = cardiovascular, DVT = deep vein thrombosis, MI = myocardial infarction, PE = pulmonary embolism, ppm = parts per million, RR = relative risk, TIA = transient ischemic attack,

Supplemental Table 39: GRADE quality assessment for preoperative smoking cessation

		Quality A	ssessment	Summary of Evidence					
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Anticipated absolute effects with intervention	Anticipated absolute effects without intervention	Pooled Estimate RR (95% CI)	Quality of evidence
CARDIOVAS	CULAR EVF	ENTS						·	
615 (4 studies) ⁷⁴	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	Very serious limitation ⁽²⁾	Potential ⁽³⁾	1.6%	3.6%	RR 0.58 (0.17 - 1.96) $I^2 = 11\%$	Very low
SMOKING C	ESSATION a	t time of surgery	7					·	
1867	Serious	Serious	No serious	No serious	Unlikely	Intensive intervention 52.9%	Control 4.7%	Intensive intervention RR 10.76 (4.55-25.46) <i>I</i> ² =0%	Low
(12 studies)	minitation	mintation	minitation	mintation		Brief intervention 50.0%	Control 38.4%	Brief intervention RR 1.30 (1.16-1.46) <i>I</i> ² =75%	
SMOKING C	ESSATION u	p to 12-month fo	ollow-up						
836 (5 studies) ⁷⁴	Serious	No serious	No serious	No serious	Potential ⁽⁶⁾	Intensive intervention 29.8%	Control 10.5%	Intensive intervention RR 2.96 $(1.57-5.55) I^2=38\%$	Low
() studies)	limitation ⁽⁴⁾	limitation ⁽⁶⁾	limitation	limitation	Totentiai	Brief intervention 17.5%	Control 16.0%	Brief intervention RR 1.09 $(0.68-1.75)$ $I^2=0\%$	LOW

CI = confidence interval, RR = risk ratio

- 1. High number of post-randomization inclusion in most studies, small sample size in most studies with potential imbalance in risk factors, unclear definition of cardiovascular events, no systematic outcome monitoring
- 2. Very small number of events and large confidence interval
- 3. Several studies did not report on cardiovascular outcomes
- 4. High number of post-randomization drop outs in most studies, small sample size in most studies with potential imbalance in risk factors
- 5. High heterogeneity $I^2 = 75\%$ with brief intervention
- 6. Several studies did not report on long term smoking cessation

Supplemental Table 40: Summary of findings for postoperative troponin monitoring

Author	Design	Total No. Patients (no. studies)	Population	Type of Troponin	Results	Comments
ALL-CA	USE MORTAL	ITY				
Levy 2011 ⁷⁵	systematic review and meta-analysis of observational studies	3318 patients (14 studies)	12 vascular 7 orthopedic 4 general surgery 3 gynecology/ urology	TnI (10 studies) TnT (3 studies) TnI&TnT (2 studies)	ORs for an elevated Tn after surgery: <u>All-cause mortality at 12 months</u> : aOR 6.7 (95% CI 4.1-10.9) $I^2=0$	individual patient data meta-analysis wide variation across studies in threshold used for an increased Tn
Redfern 2011 ⁷⁶	systematic review and meta-analysis of observational studies	1873 patients (9 studies)	vascular surgery	TnI (8 studies) TnT (1 study)	All-cause mortality at 30 days: Events/Total (%): Tn positive: 25/210 (11.9%) Tn negative: 38/1663 (2.3%)OR 5.03 (95% CI, 2.88-8.79) $I^2=24.7\%$ insufficient data to evaluate risk of intermediate-term mortality (>180 days)	focused on isolated Tn elevation in vascular patients who did not fulfill criteria for perioperative MI.
Botto 2014 ⁷⁷	prospective cohort study	15,065 patients	noncardiac surgery includes emergent/ urgent and elective 20.4% orthopedic 20.3% general, 39.4% low-risk	TnT 4 th generation (Roche)	30 Day Mortality Events/Total (%): MINS: 117 / 1,194 (9.8%) Controls: 147 / 13,822 (1.1%) aOR 3.90 (95% CI, 2.90–5.27) MINS Population Attributable Risk for Death in the population = 34.0%	MINS Criteria = peak TnT \geq 0.03 ng/ml due to myocardial ischemia. MINS does not require the presence of an ischemic feature

						 84.2% suffering MINS did not experience ischemic symptom 34.9% of patients with MINS had ischemic ECG finding 58.2% of MINS patients did not fulfill universal definition of MI
MAJOR	CARDIOVA	SCULAR EV	VENTS			
Levy 2011 ⁷⁵	systematic review and meta-analysis of observational studies	1436 patients (5 studies)	12 vascular 7 orthopedic 4 general 3 gynecology/ urology	TnI (4 studies) TnT (1 study)	Major Cardiovascular Events: Events/Total (%): Events among Tn positive patients 162/1436 (11.3%) aOR/aHR ranged from 3.9 - 17.4 for each of the studies*	 wide variation across studies in threshold used for an increased Tn * definition of major cardiovascular events varied widely between studies but all 5 studies demonstrated increased Tn was an independent predictor of major cardiovascular event
Botto 2014 ⁷⁷	prospective cohort study	15,065 patients	noncardiac surgery includes emergent/ urgent (20.4% orthopedic, 20.3% general, 39.4% low-risk)	TnT 4 th generation (Roche)	Major CV events Events/Total: MINS: 224/1,194 (18.8%) Controls: 325/13,822 (2.4%) OR, 9.59 (95% CI, 7.99–11.51)	major CV events: death, arrest, CHF, CVA

CHF = congestive heart failure, CV = cardiovascular, CVA = cardiovascular arrest, ECG = electrocardiogram, HR = hazard ratio, MI = myocardial infarction, MINS = myocardial injury after noncardiac injury, OR = odds ratio, Tn = troponin

Supplemental Table 41: GRADE quality assessment for postoperative troponin monitoring

		Summary of Evidence							
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Pooled Estimate aOR (95% CI)	Quality of evidence		
ALL-CAUSE MO	ALL-CAUSE MORTALITY AT 30 DAYS								
15,065 (1 study) ⁷⁷	Potential limitation	No serious limitation ¹	No serious limitation	No serious limitation	Undetected	aOR 3.90 (2.90–5.27)	Moderate		
MAJOR CARDIO	OVASCULAR I	EVENTS							
15,065 (1 study) ⁷⁷	No serious limitation	No serious limitation ¹	No serious limitation	No serious limitation	Undetected	aOR 9.59 (7.99–11.51)	Moderate		

aOR = adjusted odds ratio, CI = confidence interval, N/A = not available.

1. Results based on largest highest quality study

Author	Design	Type of	Total	ECG monitoring	Systematic	Results	Comments
year		surgery	no.	and ischemia	outcome		
			patients	definition	monitoring		
Rinfret	prospective	major	3564	ECG in recovery	CK-MB	Major CV events**	major CV events: MI,
2004^{78}	cohort	noncardiac		room and on the	immediately	Events/Total:	pulmonary edema, VF or
	study	surgery, age		first, third and fifth	after	Ischemia on ECG: 18/268	primary cardiac arrest, and
		≥50 years		postoperative days	surgery, on	(6.7%)	complete heart block
		old			the evening	No ischemia on ECG:	
				ischemia	after surgery	62/3296 (1.9%)	MI definition: (1) peak CK-
				definition: new	and on the	Ischemia on ECG	MB > 5% of high total CK, (2)
				ST-segment	next 2	aOR 2.0 (95% CI, 1.1-3.7)	peak CK-MB >3% of high
				depression (≥1	mornings*		total CK in the presence of
				mm in ≥ 2 leads),	_	Other variables in the	ECG changes consistent with
				ST segment		<u>model</u> : RCRI,	ischemia or infarction, 3) peak
				elevation (≥1 mm		SBP<80mmHg during	CK-MB levels exceeded the
				in ≥ 2 leads), or		surgery, duration of	normal range and the ratio of
				other changes		surgery, estimated blood	CK-MB to total CK was
				consistent with		loss, heart rate>120 BPM	>0.0278 or, in the setting of
				ischemia or strain		during surgery, β -blocker	ECG changes >0.0167
				(including T wave		therapy, pre-operative ECG	
				inversion)		abnormalities, initial SBP	risk of selection bias since
						before surgery, age,	only patients who had ECG
						hypertension, peripheral	performed were included in
						vascular disease, and	the study (82.7% inclusion)
						American Society of	
						Anesthesia class	*14.4% of patients did not get
							systematic CKMB monitoring
						**Unclear duration of	
						follow-up, presumed "in-	blinded outcome assessment
						hospital"	

Supplemental Table 42: Summary of findings for postoperative electrocardiography (ECG) monitoring

Hietala 2014 ⁷⁹	prospective cohort study	hip fracture	200	12 lead ECG before surgery and daily x 2 after surgery ischemia definition: European Society of Cardiology definition	troponin-T before and after surgery daily x 2	Mortality at 30 days no difference detected in the prognosis between patients with no ischemic ECG and those with T- wave inversion or ST depression ST elevation (n=7) had 29% mortality at 30 day	high incidence of ischemia on ECG (52%)
Bottiger 2004 ⁸⁰	prospective cohort study	vascular surgery	55	ECG at 15min, q4h x 24h, then q8h x 24h, and hten q12h x 24h holter 8h before surgery to 96h after surgery ischemia definition: new negative T wave, ST depression/ elevation > 0.2 mV in one or more leads	CKMB, troponin T and troponin I at 84 hours after surgery	Myocardial ischemia at 96 hours ECG Events/Total Ischemia on ECG: 17/24 No ischemia on ECG: 1/31 no risk-adjusted analysis reported	 myocardial ischemia defined as elevated troponin postoperative concordance of ECG and TnT to detect ischemia = 85% concordance of Holter and TnT to detect ischemia = 72% 88% of patients developing evidence of ischemia began to show signs on ECG at 15 min after surgery
Landesberg 2001 ⁸¹	prospective cohort study	vascular surgery	185	continuous 12 lead ECG x 48-72h after surgery ischemia definition: ST depression/	troponin-I and CK-MB immediately after surgery and daily x 3	Myocardial infarction in- hospital ECG Events/Total Ischemia on ECG: 12/38 No ischemia on ECG: 0/147	no risk-adjusted analysis reported perioperative myocardial ischaemia detected by 12-lead ECG was identifiable in 88% of patients 15 min after surgery

	elevation $\ge 0.2 \text{ mV}$ in one lead or ≥ 0.1 mV in two contiguous leads that lasted >10 minutes	no significant association between ischemia on ECG and MI in multivariable analysis <u>other variables in the</u> <u>model</u> : diabetes, LVH
--	---	---

aOR = adjusted odds ratio, AAA = abdominal aortic aneurysm, BPM = beats per minute, CI = confidence interval, CKMB = creatine kinase MB isoenzyme, CV = cardiovascular, ECG = electrocardiogram, LVH = left ventricular hypertrophy, MI = myocardial infarction, mV = millivolt, RCRI = revised cardiac risk index, SBP = systolic blood pressure, TnT = troponin T, VF = ventricular fibrillation.

Supplemental Table 43: GRADE quality assessment for postoperative ECG monitoring*

			Summary of Evidence								
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Pooled Estimate aOR (95% CI)	Quality of evidence				
MAJOR CARI	MAJOR CARDIOVASCULAR EVENTS										
3564 patients (1 study) ⁷⁸	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	Serious limitation ⁽²⁾	Potential limitation ⁽³⁾	aOR 2.19 (1.22-3.93)	Low				

aOR = adjusted odds ratio, CI = confidence interval, ECG = electrocardiogram.

1. Risk of selection bias since only patients who had ECG performed were included in the study (82.7% inclusion) and risk of outcome detection bias since 14.4% of patients did not get systematic CKMB monitoring

2. Very small number of events

3. Other small studies did not report on major cardiovascular outcomes.

*GRADE quality assessment only on largest study by Rinfret 2004 since had the most weight in grading recommendation.

Supplemental	Table 44: Sum	mary of find	dings for 1	postoperative	telemetrv	monitoring
~ ~ pp						

Author year	Design	Type of surgery	Total no. patients	Telemetry monitoring	Ischemia definition	Systematic outcome monitoring	Results	Comments
Landesberg 1993 ⁸²	prospective cohort study	vascular surgery	151	telemetry (3 bipolar leads) 1 day before, during and 1 day after surgery	downsloping or horizontal ST segment depression ≥0.1mV lasting 60s and separated from a previous episode >60s or ST elevation ≥0.2mV. if baseline ST depression, need J point and ST segment fall at least 0.1mV below baseline	CKMB q6h x 24h, then postoperative day 3 and 5	Major CV events in hospitalPostoperative ischemia aRR = 2.1* (p=0.43)Cumulative postoperative ischemic duration > 2 h aOR = 21.7* (p=0.001)other variable in the model: Detsky risk score	incidence ischemia on telemetry 13/151 (8.6%) blinded outcome assessment major CV events: MI, CHF, UA *95% CI not reported
Raby 1992 ⁸³	prospective cohort study	peripheral vascular surgery	115	telemetry (bipolar inferior/latera l leads) at least 24 hours prior, during and up to 72 hours after surgery	downsloping or horizontal ST depression ≥ 1mm, present at 60ms from J point, present for at least 60 seconds	CKMB every 8 to 12 hours on post- operative days 1 and 2	Major CV events in hospital Postoperative ischemia aOR 24.8* (p<0.001) *95% CI not reported other variable in the model: hypertension, history of MI, CHF, CAD, preop ischemia.	major CV events: death from cardiac cause, MI, UA and ischemic pulmonary edema. blinded outcome assessment 96% monitored for at least 24 hours post op, 70% monitored

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									for 48 hours post op
2 vascular surgery	Mangano 1990 ⁸⁴	prospective cohort study	non cardiac surgery with general anesthesia	474 (only men)	2 Channel Holter Monitor for up to 2 days preoperative, intra- operative and ad post- operative day 2	downsloping or horizontal ≥ 1mm ST depression or ≥ 2mm ST elevation for at least 1 minute	CK and CKMB at day 1 and day 5	Major CV events in hospital Ischemia on Holter Events/Total: 83/474 (18%) aOR 2.8 (95% CI, 1.3-4.9) other variables in the model: history of dysrhythmia, preoperative use of digoxin for CHF, vascular surgery	major CV events: Cardiac death, MI, UA blinded outcome assessment

aOR = adjusted odds ratio, aHR = adjusted hazard ratio, CAD = coronary artery disease, CHF = congestive heart failure, CKD = chronic kidney disease, CKMB = creatine kinase MB isoenzyme, CV = cardiovascular, MI = myocardial infarction, mm = millimeter, mV = millivolt, OR = odds ratio, Tn = troponin, UA = unstable angina.

Supplemental Table 45: GRADE quality assessment for postoperative telemetry monitoring

			Summary of Evidence								
No of participants (No studies)	Risk of bias	Estimate aOR (95% CI)	Quality of evidence								
MAJOR POST (MAJOR POST OPERATIVE CARDIAC EVENTS (IN-HOSPITAL)										
740 (3 studies) ⁸²⁻⁸⁴	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation	Serious limitation ⁽²⁾	Potential	aOR 2.8 (1.3-4.9) ⁸⁴	Low				

aOR = adjusted odds ratio, CI = confidence interval.

1. Potential selection bias

2. Small number of events and large confidence interval

Supplemental Table 46: Summary of findings for postoperative pulmonary artery catheter monitoring

Author	Design	Total No. Patients (no. studies)	Population	Intervention/Compar ator	Results	Comments
ALL-CAU	SE MORTALITY					
Shah 2005 ⁸⁵	systematic review and meta- analysis of RCTs	2667 (8 trials)	1 RCT hip fracture 2 RCTs high risk surgery 5 RCTs vascular surgery	2 RCTs: PAC vs no PAC 6 RCT: PAC with hemodynamic targets vs no PAC	Mortality Events/Total: PAC: 92/1389 (6.6%) No PAC: 101/1318 (7.7%) OR 0.84 (95% CI, 0.63-1.13)* $I^2 = 57\%$ (p=0.03)	*Pooled analysis only including RCTs in noncardiac surgery patients
PULMON	ARY EMBOLISM					
Shah 2005 ⁸⁵	systematic review and meta- analysis of RCTs	1994 (1 trial)	1 RCT high risk surgery	PAC with hemodynamic targets vs no PAC	Pulmonary embolism Events/Total: PAC: 8/997 (0.8%) No PAC: 0/997 p=0.004	only one study reported on pulmonary embolism

PAC = pulmonary artery catheter, OR = odds ratio, RCT = randomized controlled trial.

Supplemental Table 47: GRADE quality assessment for postoperative pulmonary artery catheter monitoring

			Summary of Evidence				
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Pooled Estimate OR (95% CI)	Quality of evidence
ALL CAUSE MO	ORTALITY						
2667 (13 studies) ⁸⁵	No serious Limitation ⁽¹⁾	Serious limitation ⁽²⁾	No serious limitation	Serious limitation ⁽³⁾	Unlikely	OR 0.84 (0.63-1.13)	Moderate

CI = confidence interval, PAC = pulmonary artery catheter, OR = odds ratio, RCT = randomized controlled trial.

- 1. RCTs on use of pulmonary artery catheters cannot be blinded
- 2. Moderate heterogeneity $(I^2 = 57\%)$
- 3. 6 studies were small with 38 deaths in 673 patients and wide confidence intervals; however large Sandham study consistent with overall point estimate

Supplemental Table 48: Summary of findings for postoperative shared care models

Author Year	Design	Intervention/Control	No. of patients (no. studies)	Total No. Patients for each study type	Results	Comments
ALL-CAU	SE MORTALI	ГҮ				
Grigoryan 2013 ⁸⁶	systematic review and meta-analysis of RCTs or observational studies	intervention: inpatient systematic multidisciplinary approach to hip fracture management involving an orthopedic surgeon and a geriatrician <u>control</u> : standard care group which consisted of a surgeon requesting a consult from a medical specialist or geriatrician as needed.	9096 patients (18 studies)	 8 RCTs (1552 patients) 4 prospective cohort studies with retrospective controls (2362 patients) 6 retrospective chart reviews (5182 patients) 	In-hospital Death Events/Total: $240/3609 (7\%)$ RR 0.60 (95% CI, 0.43-0.84) $I^2 = 28.4\%$ Long-term mortality Events/Total: 1051/6325 (16.6%) RR 0.83 (95% CI, 0.74-0.94) $I^2 = 0\%$	no assessment to explain heterogeneity long-term mortality = 12 months after surgery

CI = confidence interval, RCT = randomized controlled trial, RR = relative risk.

Supplemental Table 49: GRADE quality assessment for postoperative shared care models

		Quality Ass	sessment			Summary of Evidence				
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Pooled Estimate RR (95% CI)	Quality of evidence			
ALL CAUSE MO	ALL CAUSE MORTALITY – SHORT TERM									
3609 patients (9 studies) ⁸⁶	Serious limitation ⁽¹⁾	No serious limitation	Serious limitation ⁽²⁾	No serious limitation	Likely ⁽²⁾	RR 0.60 (0.43- 0.84)	Very low			
ALL CAUSE MO	ALL CAUSE MORTALITY – LONG TERM									
6325 patients (11 studies) ⁸⁶	Serious limitation ⁽¹⁾	No serious limitation	Serious limitation ⁽²⁾	No serious limitation	Likely ⁽²⁾	RR 0.83 (0.74- 0.94)	Very low			

CI = confidence interval, RR = relative risk.

1. All studies rated as good to fair with based on United States Preventative Services Task Force criteria; however, matched observational studies also included

2. Meta-analysis only for orthopedic elderly population, no studies for mixed noncardiac surgery population.

Supplemental Table 50: Summary of findings for ASA and statin in patient who suffer myocardial injury after noncardiac surgery

Author year	Type of study	Population	Total no. patients	Intervention/ Control	Results	Outcome definition	Comments
Foucrier 2014 ⁸⁷	retrospective case-control study	major vascular surgery, patients who suffered a MINS	66	cardio- vascular medication intensification vs no intensification	Cardiac events at 1 yearwith cardiovascularmedication intensificationHR 0.63 (95% CI, 0.10–1.19)without cardiovascularmedication intensificationHR 1.77 (95% CI, 1.13–2.42)	death, MI, myocardial revascularization, or pulmonary edema requiring hospitalization	cardiovascular medication : antiplatelet, statin, β-blocker, ACEI no analysis for individual medication
Devereaux 2011 ⁸⁸	prospective cohort	noncardiac surgery, patients who suffered an MI after noncardiac surgery	415	ASA at discharge Statin at discharge	<u>30-day mortality</u> statin vs no statin aOR 0.26 (95% CI, 0.13-0.54) <u>ASA vs no ASA</u> aOR 0.54 (95% CI, 0.29-0.99)	all-cause mortality	

ACEI = angiotensin-converting enzyme inhibitor, aOR = adjusted odds ratio, ASA = acetylsalicylic acid, CI = confidence interval, HR = hazard ratio, MI = myocardial infarction, MINS = myocardial injury after noncardiac surgery.

Supplemental Table 51: GRADE quality assessment for postoperative ASA and statin after cardiac complications

Quality Assessment						Summary of Evidence	
No of participants (No studies)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Estimate aOR (95% CI)	Quality of evidence
ALL-CAUSE MORTALITY							
481 (2 studies) ^{87, 88}	Serious limitation ⁽¹⁾	No serious limitation	No serious limitation ⁽²⁾	Serious limitation ⁽³⁾	Not detected	ASA: aOR 0.54 (0.29-0.99) Statin: aOR 0.26 (0.13-0.54)	Moderate

aOR = adjusted odds ratio, ASA = acetylsalicylic acid, CI = confidence interval.

1. Potential selection bias in physicians' decision to prescribe postoperative statin or inability of patients to take oral statin due to illness. Postoperative troponin blinded might have resulted in missed MIs.

2. Due to the large body of literature of ASA and statin benefit after MI in nonsurgical settings, the panel felt it represented a factor to consider to upgrade the quality of evidence

3. Relatively large confidence interval

REFERENCES

1. Taher T, Khan NA, Devereaux PJ, et al. Assessment and reporting of perioperative cardiac risk by Canadian general internists: art or science? J Gen Intern Med. 2002;17:933-6.

2. Trevena LJ, Davey HM, Barratt A, Butow P, Caldwell P. A systematic review on communicating with patients about evidence. J Eval Clin Pract. 2006;12:13-23.

3. Marteau TM, Saidi G, Goodburn S, Lawton J, Michie S, Bobrow M. Numbers or words? A randomized controlled trial of presenting screen negative results to pregnant women. Prenat Diagn. 2000;20:714-8.

Ford MK, Beattie WS, Wijeysundera DN. Systematic review: prediction of perioperative cardiac complications and mortality by the revised cardiac risk index. Ann Intern Med. 2010;152:26-35.

5. Rao JY, Yeriswamy MC, Santhosh MJ, et al. A look into Lee's score: peri-operative cardiovascular risk assessment in non-cardiac surgeries-usefulness of revised cardiac risk index. Indian Heart J. 2012;64:134-8.

6. Andersson C, Wissenberg M, Jorgensen ME, et al. Age-specific performance of the revised cardiac risk index for predicting cardiovascular risk in elective noncardiac surgery. Circ Cardiovasc Qual Outcomes. 2015;8:103-8.

7. Park SJ, Choi JH, Cho SJ, et al. Comparison of transthoracic echocardiography with Nterminal pro-brain natriuretic Peptide as a tool for risk stratification of patients undergoing major noncardiac surgery. Korean Circ J. 2011;41:505-11.

8. Gupta PK, Gupta H, Sundaram A, et al. Development and validation of a risk calculator for prediction of cardiac risk after surgery. Circulation. 2011;124:381-7.

106

9. Choi JH, Cho DK, Song YB, et al. Preoperative NT-proBNP and CRP predict perioperative major cardiovascular events in non-cardiac surgery. Heart. 2010;96:56-62.

10. Davis C, Tait G, Carroll J, Wijeysundera DN, Beattie WS. The Revised Cardiac Risk Index in the new millennium: a single-centre prospective cohort re-evaluation of the original variables in 9,519 consecutive elective surgical patients. Can J Anaesth. 2013;60:855-63.

11. Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg. 2013;217:833-42.e1-3.

12. Le Manach Y, Perel A, Coriat P, Godet G, Bertrand M, Riou B. Early and delayed myocardial infarction after abdominal aortic surgery. Anesthesiology. 2005;102:885-91.

13. Rajagopalan S, Croal BL, Bachoo P, Hillis GS, Cuthbertson BH, Brittenden J. N-terminal pro B-type natriuretic peptide is an independent predictor of postoperative myocardial injury in patients undergoing major vascular surgery. J Vasc Surg. 2008;48:912-7; discussion 7.

14. Ausset S, Auroy Y, Lambert E, et al. Cardiac troponin I release after hip surgery correlates with poor long-term cardiac outcome. Eur J Anaesthesiol. 2008;25:158-64.

15. Devereaux PJ, Bradley D, Chan MT, et al. An international prospective cohort study evaluating major vascular complications among patients undergoing noncardiac surgery: the VISION Pilot Study. Open Med. 2011;5:e193-200.

 Sheth T, Chan M, Butler C, et al. Prognostic capabilities of coronary computed tomographic angiography before non-cardiac surgery: prospective cohort study. Bmj. 2015;350:h1907.

17. Rodseth RN, Biccard BM, Le Manach Y, et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type

107

natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: a systematic review and individual patient data meta-analysis. J Am Coll Cardiol. 2014;63:170-80.

18. Rodseth RN, Lurati Buse GA, Bolliger D, et al. The predictive ability of pre-operative Btype natriuretic peptide in vascular patients for major adverse cardiac events: an individual patient data meta-analysis. J Am Coll Cardiol. 2011;58:522-9.

19. Ryding AD, Kumar S, Worthington AM, Burgess D. Prognostic value of brain natriuretic peptide in noncardiac surgery: a meta-analysis. Anesthesiology. 2009;111:311-9.

20. Rohde LE, Polanczyk CA, Goldman L, Cook EF, Lee RT, Lee TH. Usefulness of transthoracic echocardiography as a tool for risk stratification of patients undergoing major noncardiac surgery. Am J Cardiol. 2001;87:505-9.

21. Halm EA, Browner WS, Tubau JF, Tateo IM, Mangano DT. Echocardiography for assessing cardiac risk in patients having noncardiac surgery. Study of Perioperative Ischemia Research Group. Ann Intern Med. 1996;125:433-41.

22. Hwang JW, Kim EK, Yang JH, et al. Assessment of perioperative cardiac risk of patients undergoing noncardiac surgery using coronary computed tomographic angiography. Circ Cardiovasc Imaging. 2015;8.

 Kong YG, Kang JW, Kim YK, et al. Preoperative coronary calcium score is predictive of early postoperative cardiovascular complications in liver transplant recipients. Br J Anaesth.
 2015;114:437-43.

Ahn JH, Park JR, Min JH, et al. Risk stratification using computed tomography coronary angiography in patients undergoing intermediate-risk noncardiac surgery. J Am Coll Cardiol. 2013;61:661-8.

108
25. Kaaja R, Sell H, Erkola O, Harjula A. Predictive value of manual ECG-monitored exercise test before abdominal aortic or peripheral vascular surgery. Angiology. 1993;44:11-5.

26. McPhail N, Calvin JE, Shariatmadar A, Barber GG, Scobie TK. The use of preoperative exercise testing to predict cardiac complications after arterial reconstruction. J Vasc Surg. 1988;7:60-8.

27. Carliner NH, Fisher ML, Plotnick GD, et al. Routine preoperative exercise testing in patients undergoing major noncardiac surgery. Am J Cardiol. 1985;56:51-8.

28. Sgura FA, Kopecky SL, Grill JP, Gibbons RJ. Supine exercise capacity identifies patients at low risk for perioperative cardiovascular events and predicts long-term survival. Am J Med. 2000;108:334-6.

29. Grant SW, Hickey GL, Wisely NA, et al. Cardiopulmonary exercise testing and survival after elective abdominal aortic aneurysm repairdagger. Br J Anaesth. 2015;114:430-6.

30. Dunne DF, Jones RP, Lythgoe DT, et al. Cardiopulmonary exercise testing before liver surgery. J Surg Oncol. 2014;110:439-44.

31. Junejo MA, Mason JM, Sheen AJ, et al. Cardiopulmonary exercise testing for preoperative risk assessment before hepatic resection. Br J Surg. 2012;99:1097-104.

32. Colson M, Baglin J, Bolsin S, Grocott MP. Cardiopulmonary exercise testing predicts 5 yr survival after major surgery. Br J Anaesth. 2012;109:735-41.

33. Lai CW, Minto G, Challand CP, et al. Patients' inability to perform a preoperative cardiopulmonary exercise test or demonstrate an anaerobic threshold is associated with inferior outcomes after major colorectal surgery. Br J Anaesth. 2013;111:607-11.

34. Hartley RA, Pichel AC, Grant SW, et al. Preoperative cardiopulmonary exercise testing and risk of early mortality following abdominal aortic aneurysm repair. Br J Surg. 2012;99:1539-46.

35. Carlisle J, Swart M. Mid-term survival after abdominal aortic aneurysm surgery predicted by cardiopulmonary exercise testing. Br J Surg. 2007;94:966-9.

36. Ballal RS, Kapadia S, Secknus MA, Rubin D, Arheart K, Marwick TH. Prognosis of patients with vascular disease after clinical evaluation and dobutamine stress echocardiography. Am Heart J. 1999;137:469-75.

37. Torres MR, Short L, Baglin T, Case C, Gibbs H, Marwick TH. Usefulness of clinical risk markers and ischemic threshold to stratify risk in patients undergoing major noncardiac surgery. Am J Cardiol. 2002;90:238-42.

38. Day SM, Younger JG, Karavite D, Bach DS, Armstrong WF, Eagle KA. Usefulness of hypotension during dobutamine echocardiography in predicting perioperative cardiac events. Am J Cardiol. 2000;85:478-83.

 Das MK, Pellikka PA, Mahoney DW, et al. Assessment of cardiac risk before nonvascular surgery: dobutamine stress echocardiography in 530 patients. J Am Coll Cardiol. 2000;35:1647-53.

40. Lalka SG, Sawada SG, Dalsing MC, et al. Dobutamine stress echocardiography as a predictor of cardiac events associated with aortic surgery. J Vasc Surg. 1992;15:831-40; discussion 41-2.

41. Hendel RC, Chen MH, L'Italien GJ, et al. Sex differences in perioperative and long-term cardiac event-free survival in vascular surgery patients. An analysis of clinical and scintigraphic variables. Circulation. 1995;91:1044-51.

42. Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Dipyridamole technetium-99m sestamibi myocardial tomography in patients evaluated for elective vascular surgery: prognostic value for perioperative and late cardiac events. Am Heart J. 1996;131:923-9.

43. Younis LT, Aguirre F, Byers S, et al. Perioperative and long-term prognostic value of intravenous dipyridamole thallium scintigraphy in patients with peripheral vascular disease. Am Heart J. 1990;119:1287-92.

44. Vanzetto G, Machecourt J, Blendea D, et al. Additive value of thallium single-photon emission computed tomography myocardial imaging for prediction of perioperative events in clinically selected high cardiac risk patients having abdominal aortic surgery. Am J Cardiol. 1996;77:143-8.

45. Marshall ES, Raichlen JS, Forman S, Heyrich GP, Keen WD, Weitz HH. Adenosine radionuclide perfusion imaging in the preoperative evaluation of patients undergoing peripheral vascular surgery. Am J Cardiol. 1995;76:817-21.

46. Coley CM, Field TS, Abraham SA, Boucher CA, Eagle KA. Usefulness of dipyridamolethallium scanning for preoperative evaluation of cardiac risk for nonvascular surgery. Am J Cardiol. 1992;69:1280-5.

47. Levinson JR, Boucher CA, Coley CM, Guiney TE, Strauss HW, Eagle KA. Usefulness of semiquantitative analysis of dipyridamole-thallium-201 redistribution for improving risk stratification before vascular surgery. Am J Cardiol. 1990;66:406-10.

48. Chen T, Kuwabara Y, Tsutsui H, et al. The usefulness of dipyridamole thallium-201 single photon emission computed tomography for predicting perioperative cardiac events in patients undergoing non-cardiac vascular surgery. Ann Nucl Med. 2002;16:45-53.

49. Zarich SW, Kowalchuk GJ, Hill T, Kosinski EJ, Lewis SM. Prospective evaluation of viable myocardium by quantitative dipyridamole-thallium-201 scintigraphy and radionuclide ventriculography. Chest. 1995;107:335-40.

50. Hashimoto J, Suzuki T, Nakahara T, Kosuda S, Kubo A. Preoperative risk stratification using stress myocardial perfusion scintigraphy with electrocardiographic gating. J Nucl Med. 2003;44:385-90.

51. Baron JF, Mundler O, Bertrand M, et al. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to assess cardiac risk before abdominal aortic surgery. N Engl J Med. 1994;330:663-9.

52. Kontos MC, Brath LK, Akosah KO, Mohanty PK. Cardiac complications in noncardiac surgery: relative value of resting two-dimensional echocardiography and dipyridamole thallium imaging. Am Heart J. 1996;132:559-66.

53. Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. Bmj. 2015;351:h3868.

54. Devereaux PJ, Mrkobrada M, Sessler DI, et al. Aspirin in patients undergoing noncardiac surgery. N Engl J Med. 2014;370:1494-503.

55. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin:Pulmonary Embolism Prevention (PEP) trial. Lancet. 2000;355:1295-302.

56. Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:2246-64.

57. Kwon S, Thompson R, Florence M, et al. beta-blocker continuation after noncardiac surgery: a report from the surgical care and outcomes assessment program. Arch Surg. 2012;147:467-73.

58. Wallace AW, Au S, Cason BA. Association of the pattern of use of perioperative betablockade and postoperative mortality. Anesthesiology. 2010;113:794-805.

59. Devereaux PJ, Sessler DI, Leslie K, et al. Clonidine in patients undergoing noncardiac surgery. N Engl J Med. 2014;370:1504-13.

60. Wijeysundera DN, Bender JS, Beattie WS. Alpha-2 adrenergic agonists for the prevention of cardiac complications among patients undergoing surgery. Cochrane Database Syst Rev. 2009:Cd004126.

61. Wijeysundera DN, Beattie WS. Calcium channel blockers for reducing cardiac morbidity after noncardiac surgery: a meta-analysis. Anesth Analg. 2003;97:634-41.

62. Coriat P, Richer C, Douraki T, et al. Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology. 1994;81:299-307.

63. Bertrand M, Godet G, Meersschaert K, Brun L, Salcedo E, Coriat P. Should the angiotensin II antagonists be discontinued before surgery? Anesth Analg. 2001;92:26-30.

64. Schirmer U, Schurmann W. [Preoperative administration of angiotensin-converting enzyme inhibitors]. Anaesthesist. 2007;56:557-61.

65. Kheterpal S, Khodaparast O, Shanks A, O'Reilly M, Tremper KK. Chronic angiotensinconverting enzyme inhibitor or angiotensin receptor blocker therapy combined with diuretic therapy is associated with increased episodes of hypotension in noncardiac surgery. J Cardiothorac Vasc Anesth. 2008;22:180-6. 66. Sanders RD, Nicholson A, Lewis SR, Smith AF, Alderson P. Perioperative statin therapy for improving outcomes during and after noncardiac vascular surgery. Cochrane Database Syst Rev. 2013;7:Cd009971.

67. Xia J, Qu Y, Yin C, Xu D. Preoperative rosuvastatin protects patients with coronary artery disease undergoing noncardiac surgery. Cardiology. 2015;131:30-7.

68. McFalls EO, Ward HB, Moritz TE, et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med. 2004;351:2795-804.

69. Illuminati G, Schneider F, Greco C, et al. Long-term results of a randomized controlled trial analyzing the role of systematic pre-operative coronary angiography before elective carotid endarterectomy in patients with asymptomatic coronary artery disease. Eur J Vasc Endovasc Surg. 2015;49:366-74.

70. Lindstrom D, Sadr Azodi O, Wladis A, et al. Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial. Ann Surg. 2008;248:739-45.

71. Moller AM, Villebro N, Pedersen T, Tonnesen H. Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. Lancet. 2002;359:114-7.

Thomsen T, Tonnesen H, Okholm M, et al. Brief smoking cessation intervention in relation to breast cancer surgery: a randomized controlled trial. Nicotine Tob Res. 2010;12:1118-24.

Wong J, Abrishami A, Yang Y, et al. A perioperative smoking cessation intervention with varenicline: a double-blind, randomized, placebo-controlled trial. Anesthesiology.
2012;117:755-64.

74. Thomsen T, Villebro N, Moller AM. Interventions for preoperative smoking cessation.Cochrane Database Syst Rev. 2014;3:Cd002294.

75. Levy M, Heels-Ansdell D, Hiralal R, et al. Prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurement after noncardiac surgery: a systematic review and meta-analysis. Anesthesiology. 2011;114:796-806.

76. Redfern G, Rodseth RN, Biccard BM. Outcomes in vascular surgical patients with isolated postoperative troponin leak: a meta-analysis. Anaesthesia. 2011;66:604-10.

77. Botto F, Alonso-Coello P, Chan MT, et al. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120:564-78.

78. Rinfret S, Goldman L, Polanczyk CA, Cook EF, Lee TH. Value of immediate postoperative electrocardiogram to update risk stratification after major noncardiac surgery. Am J Cardiol. 2004;94:1017-22.

79. Hietala P, Strandberg M, Kiviniemi T, Strandberg N, Airaksinen KE. Usefulness of troponin T to predict short-term and long-term mortality in patients after hip fracture. Am J Cardiol. 2014;114:193-7.

80. Bottiger BW, Motsch J, Teschendorf P, et al. Postoperative 12-lead ECG predicts perioperative myocardial ischaemia associated with myocardial cell damage. Anaesthesia. 2004;59:1083-90.

81. Landesberg G, Mosseri M, Zahger D, et al. Myocardial infarction after vascular surgery:
the role of prolonged stress-induced, ST depression-type ischemia. J Am Coll Cardiol.
2001;37:1839-45.

82. Landesberg G, Luria MH, Cotev S, et al. Importance of long-duration postoperative STsegment depression in cardiac morbidity after vascular surgery. Lancet. 1993;341:715-9.

83. Raby KE, Barry J, Creager MA, Cook EF, Weisberg MC, Goldman L. Detection and significance of intraoperative and postoperative myocardial ischemia in peripheral vascular surgery. Jama. 1992;268:222-7.

84. Mangano DT, Browner WS, Hollenberg M, London MJ, Tubau JF, Tateo IM. Association of perioperative myocardial ischemia with cardiac morbidity and mortality in men undergoing noncardiac surgery. The Study of Perioperative Ischemia Research Group. N Engl J Med. 1990;323:1781-8.

85. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664-70.

86. Grigoryan KV, Javedan H, Rudolph JL. Orthogeriatric care models and outcomes in hip fracture patients: a systematic review and meta-analysis. J Orthop Trauma. 2014;28:e49-55.

87. Foucrier A, Rodseth R, Aissaoui M, et al. The long-term impact of early cardiovascular therapy intensification for postoperative troponin elevation after major vascular surgery. Anesth Analg. 2014;119:1053-63.

88. Devereaux PJ, Xavier D, Pogue J, et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann Intern Med. 2011;154:523-8.